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Independent component analysis (ICA) is a method to extract a set of time-series data using
“statistical independency” of each component. We propose applying ICA for extracting gravitational
wave (GW) signals. Our idea is to extract a signal that is commonly included in multiple detectors
and to find it by shifting the data-set around its arrival time. In this article, we show several tests
using injected signals, and show that this method can be applied to events for signal-to-noise over
15. We then demonstrate the method to actual O1-O3 events, and the identification of the arrival
time can be estimated more precisely than that was previously reported. This approach does not
require templates of waveform, therefore it can be applied for testing general relativity, and also for
finding unknown GW.

I. INTRODUCTION

Almost a decade has passed since the LIGO-Virgo
collaboration directly detected the first gravitational
wave (GW), GW150914 [1]. Up to this moment, the
LIGO-Virgo-KAGRA (LVK) collaboration has reported
90 events as the GWTC-3 catalog, which is the result
of the O3 observation period that was ended in March
2020[3]. The catalog consists of the 90 events from com-
pact binary coalescences (CBCs), of which 85 events are
from binary black-holes (BHs). LVK collaboration plans
to announce the next catalog in coming months, in which
we expect the number of detections double. In short, we
are going to enter the era of GW astronomy.

As the number of events increases, we can discuss var-
ious aspects of astronomy and physics. For example,
we are not sure how super-massive BHs in the center
of galaxies were formed. This will require BH formation
processes together with its formation rate and merging
rate, which will be explained by GW statistics (see ref-
erences in [4]). We are not sure how general relativity
(GR) is unified with quantum theories. This viewpoint
requires the validity of GR, of which best test can be
performed in the strong gravity regimes, like the merger
of BHs (see references in [5]).

GW signals are quite weak and often buried in the
noisy outputs of detectors. The main method for detect-
ing GWs from CBCs is the matched filtering analysis,
which uses a template bank of waveforms and measures
the correlation between a template and the observed sig-
nal. However, the method is only applicable for the pre-
pared set of templates and is not effective for others. For
example, GW searches of burst events from supernova
explosions and/or stochastic events from phase transi-
tions in the early Universe are not yet systematically
performed due to the lack of templates. We are testing
GR using templates based on GR, but are not possible
to test other gravity theories. Therefore, it is desirable

∗ Contact author: hisaaki.shinkai@oit.ac.jp

to develop a new method that can identify GW signals
without using prepared templates.

Several new ideas have been proposed in this direc-
tion. One idea is to process time series data with math-
ematical and/or statistical techniques, or another is to
use machine learning approaches (see a comparison of
them for extracting ringdown mock data [6] and refer-
ences therein). Such idea can be applied both for remov-
ing noises and for extracting GW signals, and is expected
to be useful for supporting current standard data-analysis
methods.

In this article, we propose one new idea for extract-
ing GW signals, using independent component analysis
(ICA) for extracting GW signals directly from the out-
puts of the detector data.

ICA is a method for separating a set of time series
data into a new set, as its each component has “statis-
tical independence” (see a review by Hyvärinen et al.
[11, 12]). A well-known example is “blind signal sepa-
ration”, a method to identify the voices of n persons in
a cocktail party from their mixed sound files of n mi-
crophones. See e.g. [13] for n = 10 case. ICA makes a
linear representation of non-Gaussian data so as the com-
ponents are statistically independent or as independent
as possible. The fundamental measure is a separation
how far from Gaussian. Thus, in the GW data analysis,
we expect that GW extraction using ICA is effective, at
least the background noise is Gaussian.

We note the differences between ICA and principal
component analysis (PCA) of which applications to GW
analysis have been reported recently in [7–10]. Both
have a common goal to extract data as in the lower-
dimensional space from original data, but their criteria
are different. PCA is based on the principle of uncorre-
lation, by maximizing the variance of the data. On the
other hand, ICA is based on statistical independency, in
other words, no information can be obtained from other
components, which is stronger requirement than uncor-
relation. PCA is suitable for dimensional reduction to
capture the main direction of large variance, data visu-
alization, noise removal, etc, while ICA is effective for
separating mixed signals and extracting hidden indepen-
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dent components.
The usage of ICA to gravitational wave data analysis

was first pointed out by De Rosa et al. [14]. The applica-
tion to non-Gaussian noise subtraction was suggested by
Morisaki et al. [16]. De Rosa et al. demonstrated ICA for
injected signals mimicking two interferometer data, and
reported that preprocessing ICA before matched filter-
ing technique allows to lower the level of noise (increase
the signal-to-noise ratio (SNR)). The KAGRA collabora-
tion reported an application to their real data (iKAGRA
data in 2016) for obtaining enhanced SNR using physi-
cal environmental channels (seismic channels) as known
signals[15].

In this article, we report on our trials to extract GW
signals directly using ICA. We demonstrate how injected
data can be extracted from Gaussian noise, or from real
detector output, and also show our trials of actual GW
event data. GW events are fundamentally identified us-
ing data from multiple interferometers, taking into ac-
count the difference of the arrival time (up to 10 ms be-
tween Livingston and Hanford, 30 ms between Hanford
and Virgo). We have developed a tool for extracting real
GW signals which is available by shifting the data-set of
multiple-detector data around its arrival time. In result,
the arrival time differences between the detectors can be
estimated more precisely than previously reported.

The structure of this article is as follows. In Section II,
we explain the fundamental idea of ICA, and our basic
procedures. In Section III, we demonstrate some tests
using injected data for Gaussian noise and actual detec-
tor noise. In Section IV, we show the results of GW
extractions of binary black-hole mergers in O1-O3. Our
conclusions and outlook are given in Section V.

II. INDEPENDENT COMPONENT ANALYSIS

A. The fundamental procedures of ICA

Suppose we receive the time-series signal x(t) ≡
(x1(t), · · · , xn(t))

T with n detectors from n source sig-
nals s(t) ≡ (s1(t), · · · , sn(t))T , and they are mixed up
linearly by

x(t) = As(t), (1)

where A is the time-independent matrix which represents
the superposition of the source signals. Our objective is
to extract the source signal (candidate) s̃(t) from x(t).
We write the problem as

s̃(t) = Wx(t), (2)

and set our goal to find out time-independent matrix W .
We, heareafter, call x(t) and s̃(t) as input signals (to
ICA) and output signals (from ICA), respectively.

ICA focuses on the idea of “statistical independence”
of each source signal component s̃. Roughly speaking,
“statistical independence” can be evaluated as how far

from Gaussianity. (Hence, ICA is not appropriate for
extracting Gaussian signals since their superposition is
Gaussian.)
Therefore, one strategy to search W is

si(t) = wT
i V x(t) ≡ wT

i z(t) (3)

has the most non-Gaussianity, where wT
i =

(wi1, wi2, · · · ) is a line of W , and V expresses the
whiten process of x(t) to z(t) (which makes x(t) has no
correlation and variance unity).
One possible measure of non-Gaussianity is the kurto-

sis of wTz,

kurt(wTz) = E[(wTz)4]− 3{E[(wTz)2]}2. (4)

A well-known algorism as FastICA tries to find w which
maximize eq. (4) by iterative method. Requiring that
the norm of w is unity, ||w||2 = 1, (which makes
E[(wTz)2] = ||w||2). From the derivative of eq. (4),
we get

∂

∂wi
|kurt(wT

i z)| =

 E[4(wT
i z)

3z1]
E[4(wT

i z)
3z2]

...

−12||wi||2

 w11

w12

...

 .

(5)
We, then, can findwi as eq. (5) equals to zero by iterative
method, that determines si(t). Repeating the process of
finding another component wi as each wi satisfies its
orthogonality, we can identify all possible source signals
s̃(t).
However, the method using kurtosis is sometimes quite

sensitive to outliers. We also met this fact, and decided to
use alternative FastICA as known to g-function method,
which uses, instead of eq. (4),

wp = E[zg(wT
p z)]− E[g′(wT

p z)]wp (6)

where g(y) = tanh y.
In summary, our procedure can be listed as follows.

1. Whiten the data x(t) using power spectral density
of each detector, and apply filtering if necessary.

2. Normalize x(t) to z(t) (mean zero, variance one).

3. Determine the number of independent components
m. Set the counter p to p = 1.

4. Randomly choose an initial weight matrix for wp.

5. Obtain wp by eq. (6).

6. Orthogonalize wp from other components:

wp = wp −
p−1∑
j=1

(wT
p wj)wj (7)

7. Let wp = wp/∥wp∥
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8. If wp does not converge to the previous wp, then
go back to 5.

9. Let p = p+ 1. If p ≤ m, go back to 4.

In order to confirm our converged w is unique, we re-
peated this sequence 5 times at least. In most cases, the
converged solution was obtained directly.

Note that output signals from ICA do not have infor-
mation of amplitude and signal’s phase can be reversed,
since we normalize the data first and the phase would be
reversed due to the signature of det(w). We need further
processes to identify them.

B. Measure for identification of GW

For injection tests (Sec. III), we evaluate the output
signal by comparing with the injected one, using its wave-
form and spectrum. When we test with an injection of
inspiral wave signal, the waveform hinsp is

hinsp(t; tc,Mc) = Ainsp

(
5

c(tc − t)

)1/4

× sin

{
−2

(
5GMc

c3

)−5/8

(tc − t)5/8

}
(8)

where c, G, Mc, tc is the speed of light, the gravitation
constant, the chirp mass, and the merger time, respec-
tively. The factor of the amplitude Ainsp can be written

as Ainsp = (1/r)
(
GMc/c

2
)5/4

, where r is the distance to
the source, but we just adjust Ainsp as a parameter.

For real GW extraction (Sec. IV), we evaluate the
output candidate signal, s̃1(t), and the others, s̃2(t) (,
s̃3(t)), by defining the “strength of the extracted signal”
using the area of the signal in the graph,

Aa =

tc∑
t=ts

s̃a(t) ·∆t (9)

and calculate its ratio

A =
A1

A2
, or A =

2A1

A2 +A3
, (10)

where tc is the time of coalescence and ts = tc − 15 ms
for binary black-hole data. Large A suggests that s̃1(t)
has large amplitude than s̃2(t) (and s̃3(t) ).
We also compare the candidate signal s̃1(t) and the

estimated inspiral waveform using the chirp mass Mc re-
ported in GWOSC (Gravitational Wave Open Science
Center) website [17], hinsp((t; tc,Mc)), by taking the
residuals

R =

tc∑
t=ts

|s̃1(t)− hinsp(t; tc,Mc)|· (11)

Small R event suggests better extraction than the other
events.

C. Finding the arrival time

One of the key procedures of our proposal is to find
the arrival time of GW signal to each detector by shifting
input data continually. For normal applications of ICA
method, we have not seen such an implementation, but
it is necessary for GW signals.
In this article, we only demonstrate the applications for

the known events up to O3, so the merger time, tc, is took
as a given suggested value. We then search GW signal
around tc by shifting the data from each detector up to
±30 ms (∼ distance between Hanford and Virgo), and
search the combination which shows the largest A. As
we show later in Table III, the result of the shifted-time,
e.g. ∆tHL(= tL − tH) between Hanford and Livingston,
can be identified with the difference of the arrival time of
GW, and its comparison with those in published articles
will also support how our method works.

III. DEMONSTRATIONS WITH INJECTED GW
SIGNALS

In this section, we discuss how ICA works for extract-
ing GW with test problems. The target discussion is at
what level we can apply ICA for signal extraction, i.e.
applicable characteristics of signals.

A. Injections of inspiral signal to Gaussian Noise

The first test is an injection of inspiral wave signal to
Gaussian noise.
We prepare two different Gaussian-type noises, n1G

and n2G, and inject hinsp to them as

Model 1 :

{
x1(t) = n1G(t) + hinsp(t; tc,Mc),
x2(t) = n2G(t) + hinsp(t; tc,Mc).

(12)

If we put the same Gaussian noise for both x1(t) and
x2(t), then the test is the same with well-known blind
signal separation problem. Model 1 is different from this,
so somewhat challenging for the cases of weak injected
signal.

TABLE I. Results of Model 1 [injection of inspiral wave to the
Gaussian noise]: the fitting parameter α and β of the Fourier
spectrum of the extracted signal. Note that α = 15.3 and
β = 0.63 for the injected signal.

|hinsp| α β ref.

[1.0, 5.0] 13.7 0.665 Fig.1(a4)
[0.5, 2.5] 7.53 0.706 Fig.1(b4)
[0.2, 1.0] -57.5 0.661 Fig.1(c4)

Figure 1 shows examples of the results of this model.
The length of the data is one second, t = [0, 1], with
its sampling rate 4096. We set the merger time at
tc = 1.0 + 1/4096. We used the chirp mass Mc =
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FIG. 1. An example of GW extraction using ICA, the case of Model 1 [eq. (12)], injection of an inspiral wave to Gaussian

background. Figures are of |hinsp(t = 1)|/|nG(t)| = 5.0 (a1-a4), 2.5 (b1-b4) and 1.0 (c1-c4). We use one-second length data

t = [0, 1], with tc = 1 + 1/4096. We see inspiral wave is clearly extracted for (a), but not for (c).
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26.12M⊙, which is of 30M⊙-30M⊙ binary at the ob-
served frame. We measure the amplitude of injected
inspiral signal by the averaged amplitude of the noises,
|n1G|2 = |n2G|2 = 1. We show three cases for the injected
inspiral signals which evolve |hinsp| = [1.0, 5.0], [0.5, 2.5],
and [0.2, 1.0] for t = [0, 1] as shown in Fig. 1 (a1), (b1)
and (c1), respectively. We see the inspiral characteristics
is observable by eyes over 30 Hz in Fig. 1 (a1).

In Fig. 1, we show also their Fourier spectrum in (a2),
(b2), and (c2), and the output results of ICA in (a3),
(b3), and (c3) together with these Fourier spectrum in
(a4), (b4), and (c4). Remark that the results of ICA
do not include the information of its strongness of each
mode, i.e. the amplitude of output data do not indicate
their strongness in the input data.

In order to see how the extracted signal matches with
the injected one, we approximate the power spectrum
of the output signal [Fig.1(a4), (b4), and (c4)] with a
function (f − α)−β for f = [20, 300] Hz where α, β are
constants, and compared them with those of the injected
signal, (f−15.3)−0.63. We show the comparison in Table
I. We made the same extractions 10 times by changing
the initial guess of wp randomly, and show the average
of the fitting parameter α, β in the table. As expected,
if the amplitude of injected signals is large, then ICA
clearly identifies the signal. We see the identification is
hard when the amplitude of injected signal is as the same
level of the noise.

B. Injections of GW signal to real detector data

We next demonstrate signal extractions of injected
waves from the real detector data. We use the detector
data around GW150914 (GPS time of tc = 1126259462.4)
of LIGO-Hanford, nH(t), and of LIGO-Livingston, nL(t),
which we downloaded from GWOSC.

We made two tests. One is the injection of a sinusoidal
wave,

Model 2 :

{
x1(t) = nH(t) + sin(2πft),
x2(t) = nL(t) + sin(2πft)

(13)

and the other is an inspiral wave [eq.(8)],

Model 3 :

{
s1(t) = nH(t) + hinsp(t; t0,Mc),
s2(t) = nL(t) + hinsp(t; t0,Mc).

(14)

For Model 2, we used two second data around the
merger time of GW150914, and we set f = 213 Hz which
is independent from the known line noises. Figure 2 and
Table II are the results of Model 2. By changing the am-
plitude, we show the cases of signal-to-noise ratio (SNR)
20 (Fig.(a)), 10 (b) and 5 (c). Figures (a1), (b1) and
(c1) are input data of x1(t) and x2(t), where we show
only the center one-second length. Figures (a2), (b2)
and (c2) are the Fourier spectrum of (a1), (b1) and (c1)
respectively. We see the original detector data include
line noise at 60 Hz and 120 Hz. Figures (a3), (b3), and

(c3) are the output of ICA, and (a4), (b4), (c4) are their
Fourier spectrum, respectively. In order to judge whether
ICA extracted the injected wave, we show in Table II the
ratio of the power spectrum of 213 Hz over those of the
average of 150-250 Hz. We think we are safe to say the
extraction was effective for the cases SNR ≥ 10.
For Model 3, we used one second data before one sec-

ond of the merger time tc of GW150914. The injected
inspiral wave is h(t; tc − 1 s, 26M⊙). Results are shown
in Figure 3 with the same notation with previous figures.
Note that we filtered for f > 300 Hz and also that the
input data has strong line noise at 60 Hz. The SNR of
the injected signal is 20.9 (a1-a4), 16.8 (b1-b4), and 10.5
(c1-c4). We see the inspiral feature in Fourier spectrum
of the output data for SNR > 15.

TABLE II. Results of Model 2 [injection of sinusoidal wave
to the real detector data]: SNR and excess power spectrum
of 213 Hz in the extracted data over the average of 150-2050
Hz.

SNR to hH SNR to hL excess power ref.
20.8 20.0 7.78 Fig.2(a4)
10.4 10.0 3.76 Fig.2(b4)
5.2 5.0 1.93 Fig.2(c4)

IV. APPLICATIONS TO REAL GW
EXTRACTIONS

In this section, we demonstrate GW extractions of the
real events.

A. GW150914

We show the case of GW150914[1] a bit detail. This
is the first detection of GW, and is well-tested in various
ways as the standard one. The event was observed by
Hanford (H) and Livingston (L) observatories, and the
announced network-SNR in GWOSC is 26.0.
We used one-second data around tc with its sampling-

rate 4096. As a pre-process, we whitened the data using
each detector’s power spectral density, and also filtered
the data to [20, 300] Hz. By shifting Livingston’s data
with every 1/4096 sec, we applied ICA with 5 different
initial weight matrix wp and searched the data set which
shows the maximum strength of the extracted signal, A
[eq. (10)]. The calculations requires only 90 s by a laptop
for finding the best A result.
We found the maximum A when ∆tHL = −7.32 ms.

Figure 5 shows A as a function of ∆tHL. The plot in-
cludes the results of our 5 different initial weight matrix
wp, and we see the maximum of A is independent from
those initial value (which means wp is well-converged for
each cases). From Figure 5, we estimate ∆tHL with the
error-bar ±0.15 ms. Note that the LIGO-Virgo paper [1]
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FIG. 2. An example of GW extraction using ICA, the case of Model 2 [eq. (13)], injections of a sinusoidal wave of 213 Hz to
the Hanford and Livingston data around the event GW190914. (Note that the original data include large noises at 60 Hz and
120 Hz.) The signal-to-noise ratio (SNR) is 20 (a1-a4), 10 (b1-b4), and 5 (c1-c4). We see the injected wave is clearly extracted
for (a) and (b), but not for (c).
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(a3) Output of ICA for (a1). (a4) Fourier spectrum of (a3).
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(b1) Input signals of SNR 16.8. (b2) Fourier spectrum of (b1).

0.0 0.2 0.4 0.6 0.8 1.0[s]
5

0

5 s1

0.0 0.2 0.4 0.6 0.8 1.0[s]
5

0

5 s2

0.0 50.0 100.0 150.0 200.0 250.0 300.0[Hz]
0.0

0.2

0.4 s1

0.0 50.0 100.0 150.0 200.0 250.0 300.0[Hz]
0.0

0.2

0.4 s2

(b3) Output of ICA for (b1). (b4) Fourier spectrum of (b3).
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(c1) Input signals of SNR 10.5. (c2) Fourier spectrum of (c1)
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(c3) Output of ICA for (c1). (c4) Fourier spectrum of (c3).

FIG. 3. Test of GW extraction using ICA: the case of Model 3 [eq. (14)], injections of a inspiral wave signal to the Hanford and
Livingston data one second before the event GW150914. The SNR of the injected signal is 20.9 (a1-a4), 16.8 (b1-b4), and 10.5
(c1-c4). We see the inspiral feature in Fourier spectrum of the output data for SNR > 15. Note that we filtered for f > 300 Hz
and also that the input data has strong line noise at 60 Hz.
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(a) Input signals with ∆tHL = −7.32 ms. The data x1
and x2 are of Hanford and Livingston data, respectively.

(b) Fourier spectrum of (a).
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(c) Output of ICA. (d) Fourier spectrum of (c).

FIG. 4. Application to GW150914. (a/b) The set of input data and its spectrum with ∆tHL = −7.32 ms which shows the
largest A in the output of ICA. The x1 and x2 indicates the data of Hanford and Livingston, respectively. (c/d) The output
of ICA, and its spectrum. We clearly see the signal (s1) is separted from the other (s2). Note that the input data have a line
noise at 120 Hz.

-10.0 -5.0 0.0 5.0 10.0[ms]

1

2

3

4

FIG. 5. The strength of the extracted signal, A [eq. (10)] as
a function of ∆tHL for the case of GW150914. Five trials of
different initial weight matrix are plotted at each ∆tHL. We
see the maximum is at ∆tHL = −7.32+0.15

−0.15 ms. Note that

LIGO-Virgo paper [1] shows ∆tHL = −6.9+0.5
−0.4 ms.

denotes ∆tHL = −6.9+0.5
−0.4 ms. Our number is consistent

with [1] and with a small error-bar.

We plot the input data (x1, x2) and the output data
(s1, s2) for the largest A case in Fig. 4. For the output
data s1 [in Fig. 4(c)], we next searched the best matched
inspiral waveform, hinsp(t; tc,Mc), by changing Mc and
amplitude, measuring its residuals, R. We found Mc =
30.8M⊙ shows the lowest residuals. This case is shown
as Fig. 6, and we see how the output s1 is similar to the
expected inspiral signal.

GWOSC webpage shows Mc = 28.6+1.7
−1.5M⊙ as an es-
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1.5
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0.5
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0.5

1.0

1.5
Scaled Estimated
Theoretical

0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54[s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

FIG. 6. Extraction of GW150914. (Upper) The output data
(Fig. 4 (c) s1) is overlapped with hinsp(t; tc,Mc = 30.8M⊙).
(Lower) The residuals.

timated value in the source frame. Our Mc is in the
observed frame, which differs as

Mobs
c = M source

c (1 + z) (15)

where z is the redshift parameter of the source. From
error-bars in M source

c in GWOSC data, we calculate z
(hereafter we denote zICA) as zICA = 0.077 ± 0.06.
The redshift z of GW150914 in GWOSC webpage is
z = 0.09± 0.03. Therefore our result is again consistent
with them.
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TABLE III. Results of the wave extractions by ICA for large SNR events in O1-O3. The column obs shows which detector
(Hanford/Livingston/Virgo) observed. SNR is the network signal-to-noise ratio (centered value) which is announced in GWOSC
(https://gwosc.org). ∆tHL is the time shift between Hanford data and Livingston data, tL − tH, in ms when ICA shows the
best separation of the signal. A is the ratio of extracted signal to the other noise(s) evaluated by eq. (10). R is the residuals
of the extracted waveform and estimated inspiral waveform, (11), between [tc − 0.15 ms, tc]. See table IV for comparisons of
chirp-mass and red-shift.

event obs SNR ∆tHL (ms) ∆tHV (ms) ∆tLV (ms) A R/10−12 ref.
GW150914 HL 26.0 −7.32±1.5

1.5 – – 4.19 5.88 Fig.4
GW190521 074359 HL 32.8 −6.35±0.98

0.49 – – 1.83 10.3 Fig.7(a)
GW191109 010717 HL 47.5 3.17±0.98

0.73 – – 3.40 18.4 Fig.7(b)
GW191204 171526 HL 8.55 −2.44±0.49

0.73 – – 2.07 3.27 Fig.7(c)
GW191216 213338 HV 8.33 – −11.0±1.5

0.73 – 3.08 2.09 Fig.7(d)
GW200112 155838 LV 27.4 – – −23.2±0.49

0.24 2.43 10.5 Fig.7(e)
GW170814 HLV 24.1 −8.06±0.49

0.98 0.98±2.4
0.24 – 3.54 5.07 Fig.7(f)

GW190412 HLV 13.3 −3.91±0.24
0.24 −13.92±0.98

0.49 – 2.21 4.40 Fig.7(g)
GW190521 HLV 63.3 2.93±0.49

1.2 −25.15±0.49
1.7 – 2.85 31.8 Fig.7(h)

GW190814 HLV 6.11 2.20±0.49
0.24 21.24±0.73

0.24 – 2.00 1.65 Fig.7(i)
GW200129 065458 HLV 27.2 3.42±0.98

0.24 −18.31±0.24
0.24 – 3.96 11.3 Fig.7(j)

GW200224 222234 HLV 31.1 −3.66±2.7
0.24 −9.28±0.24

0.98 – 3.28 13.4 Fig.7(k)
GW200311 115853 HLV 26.6 −3.66±0.73

1.2 −27.10±2.2
2.2 – 3.17 4.34 Fig.7(l)

TABLE IV. Comparisons of chirp mass, Msource
c , shown in GWOSC and the one obtained by ICA,Mobs

c from the best fit
inspiral-wave model. The difference can be regard as redshift factor (1 + zICA). The redshift factor in GWOSC, z, is also
shown.

GWOSC ICA

event obs SNR Msource
c /M⊙ z Mobs

c /M⊙ zICA ref.

GW150914 HL 26.0 28.6+1.7
−1.5 0.09+0.03

−0.03 30.8 0.077+0.06
−0.06 Fig.4

GW190521 074359 HL 25.9 32.8+3.2
−2.8 0.21+0.10

−0.10 36.4 0.11+0.10
−0.10 Fig.7(a)

GW191109 010717 HL 17.3 47.5+9.6
−7.5 0.25+0.18

−0.12 53.7 0.13+0.22
−0.19 Fig.7(b)

GW191204 171526 HL 17.5 8.56+0.41
−0.28 0.34+0.25

−0.18 11.1 0.29+0.04
−0.06 Fig.7(c)

GW191216 213338 HV 18.6 8.33+0.22
−0.19 0.07+0.02

−0.03 9.00 0.08+0.03
−0.03 Fig.7(d)

GW200112 155838 LV 19.8 27.4+2.6
−2.1 0.24+0.07

−0.08 32.7 0.19+0.10
−0.10 Fig.7(e)

GW170814 HLV 17.7 24.1+1.4
−1.1 0.12+0.03

−0.04 26.0 0.08+0.05
−0.06 Fig.7(f)

GW190412 HLV 19.8 13.3+0.5
−0.5 0.15+0.04

−0.04 14.8 0.11+0.04
−0.04 Fig.7(g)

GW190521 HLV 14.3 63.3+19.6
−14.6 0.56+0.36

−0.27 81.7 0.29+0.39
−0.30 Fig.7(h)

GW190814 HLV 25.3 6.11+0.06
−0.05 0.05+0.01

−0.01 6.35 0.04+0.01
−0.01 Fig.7(i)

GW200129 065458 HLV 26.8 27.2+2.1
−2.3 0.18+0.05

−0.07 30.6 0.13+0.10
−0.08 Fig.7(j)

GW200224 222234 HLV 20.0 31.1+3.3
−2.7 0.32+0.08

−0.11 37.6 0.21+0.11
−0.12 Fig.7(k)

GW200311 115853 HLV 17.8 26.6+2.4
−2.0 0.23+0.05

−0.07 31.0 0.17+0.09
−0.10 Fig.7(l)

B. Other events

We continue the similar analysis for other GW events
from binary BHs with higher SNR events in O1-O3. Figs.
7 show the input data (x1, x2, x3) and the output data
(s1, s2, s3) which show the largest A. For three-detector
events, we made 2-dimensional search for shifting data,
which requires 20100 combinations at maximum, and the
computation time is around 20 hours. The results of ICA
are summarized in Table III and IV.

Table III can be used for understanding how ICA
works. Roughly summarizing, the parameter A, which
is a measure of the quality of extraction, is almost the
same regardless of the SNR. The residual R, which is a
measure of how the extracted wave can be matched with
inspiral waveform, has negative correlation with SNR.

Table IV can be used for understanding how the results

of ICA are realistic. By making the matches with inspiral
wave, we can specify Mobs

c for each event. With M source
c

in GWOSC table, we compare the redshift parameters in
GWOSC table and zICA. As we see in the table IV, all z
parameters are consistent.

V. SUMMARY

We applied independent component analysis (ICA) to
extract gravitational-wave signals. From injection tests,
we see that the extractions are available even from the
real interferometer data if the signals’ strength (SNR)
is 15 or higher. We then demonstrate this method to
the inspiral-wave extraction for binary black-hole events,
especially 13 high-SNR events up to O3 (GWTC-3 cat-
alog). As we show in Table III the extractions are per-
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(a1) Input signals of GW190521 074359 with ∆tHL =
−6.35 ms. The data x1 and x2 are of Hanford and Liv-
ingston data, respectively.

(a2) Output of ICA for GW190521 074359.
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(b1) Input signals of GW191109 010717 with ∆tHL =
+3.17 ms. The data x1 and x2 are of Hanford and Liv-
ingston data, respectively.

(b2) Output of ICA for GW191109 010717.
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(c1) Input signals of GW191204 171526 with ∆tHL =
−2.44 ms. The data x1 and x2 are of Hanford and Liv-
ingston data, respectively.

(c2) Output of ICA for GW191204 171526.
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(d1) Input signals of GW191216 213338 with ∆tHV =
−11.0 ms. The data x1 and x2 are of Hanford and Virgo
data, respectively.

(d2) Output of ICA for GW191216 213338
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(e1) Input signals of GW200112 155838 with ∆tLV =
−23.2 ms. The data x1 and x2 are of Livingston and
Virgo data, respectively.

(e2) Output of ICA for GW200112 155838.

FIG. 7. Input and Output data of ICA analysis.
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(f1) Input signals of GW170814 with ∆tHL = −8.06 ms
and ∆tHV = +0.98 ms. The data x1, x2, and x3 are of
Hanford, Livingston, and Virgo, respectively.

(f2) Output of ICA for GW170814.
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(g1) Input signals of GW190412 with ∆tHL = −3.91 ms
and ∆tHV = −13.92 ms. The data x1, x2, and x3 are of
Hanford, Livingston, and Virgo, respectively.

(g2) Output of ICA for GW190412.
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(h1) Input signals of GW190521 with ∆tHL = +2.93 ms
and ∆tHV = −25.15 ms. The data x1, x2, and x3 are of
Hanford, Livingston, and Virgo, respectively.

(h2) Output of ICA for GW190521.
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(i1) Input signals of GW190814 with ∆tHL = +2.20 ms
and ∆tHV = +21.24 ms. The data x1, x2, and x3 are of
Hanford, Livingston, and Virgo, respectively.

(i2) Output of ICA for GW190814.
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(j1) Input signals of GW200129 065458 with ∆tHL =
+3.42 ms and ∆tHV = −18.31 ms. The data x1, x2, and
x3 are of Hanford, Livingston, and Virgo, respectively.

(j2) Output of ICA for GW200129 065458.

FIG. 7. Input and Output data of ICA analysis (cont.)



12

0.0 0.2 0.4 0.6 0.8 1.0[s]
250

0

250
x1

0.0 0.2 0.4 0.6 0.8 1.0[s]
250

0

250
x2

0.0 0.2 0.4 0.6 0.8 1.0[s]
250

0

250
x3

0.0 0.2 0.4 0.6 0.8 1.0[s]5

0

5
s1

0.0 0.2 0.4 0.6 0.8 1.0[s]5

0

5
s2

0.0 0.2 0.4 0.6 0.8 1.0[s]5

0

5
s3

(k1) Input signals of GW200224 222234 with ∆tHL =
−3.66 ms and ∆tHV = −9.28 ms. The data x1, x2, and
x3 are of Hanford, Livingston, and Virgo, respectively.

(k2) Output of ICA for GW200224 222234.
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(l1) Input signals of GW200311 115853 with ∆tHL =
−3.66 ms and ∆tHV = −27.10 ms. The data x1, x2, and
x3 are of Hanford, Livingston, and Virgo, respectively.

(l2) Output of ICA for GW200311 115853.

FIG. 7. Input and Output data of ICA analysis (cont.)

formed for all events, and as we show in Table IV, the
fitted waveforms show consistent parameters Mc and z
with those reported by LIGO-Virgo-KAGRA collabora-
tion papers.

We remark again that ICA is based on the idea how the
signal is mathematically independent from others. The
only non-Gaussian waves can be extracted. Additionally,
the current FastICA method starts from normalizing and
whitening the input data, which makes the output sig-
nals without information of the amplitude, and the phase
can be reversed. If we know the waveform like our appli-
cations to GWTC-3, we would determine the phase by

evaluating the residual, while the amplitude itself remain
undetermined.
Although there are limitations, the method proposed

here is attractive because it does not use any templates
in advance. If we could visualize the waveforms first, it
would undoubtedly help theoretical understanding. We
think this ICA approach will contribute for testing GR
and also for finding unknown GW signals.
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