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Abstract
We numerically investigated the sequences of initial data of a thin spindle
and a thin ring in five-dimensional space-time in the context of the cosmic
censorship conjecture. We modeled the matter in non-rotating homogeneous
spheroidal or toroidal configurations under the momentarily static assumption,
solved the Hamiltonian constraint equation and searched the apparent horizons.
We discussed when S3 (black-hole) or S1 × S2 (black-ring) horizons (‘black
objects’) are formed. By monitoring the location of the maximum Kretchmann
invariant, an appearance of ‘naked singularity’ or ‘naked ring’ under special
situations is suggested. We also discuss the validity of the hyper-hoop
conjecture using a minimum area around the object, and show that the
appearance of the ring horizon does not match with this hoop.

PACS numbers: 04.20.Dw, 04.20.Ex, 04.25.dc, 04.50.Gh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In general relativity, there are two famous conjectures concerning the gravitational collapse.
One is the cosmic censorship conjecture [1] which states that collapse driven singularities
will always be clothed by an event horizon and hence can never be visible from the outside.
The other is the hoop conjecture [2] which states that black holes will form when and only
when a mass M gets compacted into a region whose circumference C in every direction is
C � 4πM . These two conjectures have been extensively studied in various methods; among
them we believe that the numerical works by Shapiro and Teukolsky [3] showed the most
exciting results: (a tendency of) the appearance of a naked singularity. This was reported from
the fully relativistic time evolution of collisionless particles in a highly prolate initial shape;
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and the results of time evolutions are in agreement with the predictions of the sequence of
their initial data [4].

In recent years, on the other hand, gravitation in higher dimensional space-time is getting
a lot of attention. This is from an attempt to unify fundamental forces including gravity at
TeV scale, and if so, it is suggested that small black holes might be produced at the CERN
large hadron collider (LHC). The LHC experiments are expected to validate several higher
dimensional gravitational models. In such an exciting situation, the theoretical interests are
also in the general discussion of black-hole structures. Our discussion is one of them: in what
circumstances are black holes formed?

New features of higher dimensional black holes and black objects are reported due to
additional physical freedoms. The four-dimensional black holes are known to be S2 from
the topological theorem. Also in the asymptotically flat and stationary space-time, four-
dimensional black holes are known to be the Kerr black hole from the uniqueness theorem.
On the other hand, in higher dimensional space-time, quite rich structures are available, such
as a torus black hole (‘black ring’) with S1 × S2 horizon [5, 6] or black Saturn [7], black
di-ring [8, 9] (see the review [10] for references). The uniqueness theorem of axisymmetric
space-time in a higher dimension is known to be violated.

So far, the black-hole studies in higher dimensional space-time are mainly carried out
using analytic stationary solutions. There are also many numerical attempts to seek the
higher dimensional black-hole structures, e.g. collider-oriented dynamical features [11, 12], a
new stationary solution sequence [13], (here we selected the works with asymptotically flat
space-time). However, fully relativistic dynamical features, such as the formation processes,
stabilities and late-time fate of the black objects, are left unknown. We plan to investigate
such dynamical processes numerically, and this is the first report on the constructions of the
sequences of initial data for time evolution.

The hoop conjecture tries to denote ‘if’ and ‘only if’ conditions for the formation of the
horizon in the process of gravitational collapse. The ‘only if’ part of the statement would be
replaced with the so-called Gibbons–Penrose isoperimetric inequality [14], M �

√
A/16π ,

where M is the total mass and A is the area of the trapped surface. This inequality is based
on the cosmic censorship conjecture, so that its proof or disproof is the important issue (see a
precise formulation in [15] and a recent review [16]).

The higher dimensional versions of the hoop conjecture and the isoperimetric inequality
have been discussed so far [17, 19–21]. While there are differences in their coefficiencies,
the hoop conjecture in D-dimensional space-time would be basically expressed as follows: a
black hole with horizons form when and only when a mass M gets compacted into a region
whose (D − 3)-dimensional area VD−3 in every direction is

VD−3 � GDM, (1)

where GD is the gravitational constant in D-dimensional theory of gravity. Here VD−3 means
the volume of (D − 3)-dimensional closed submanifold of a space-like hypersurface. That is,
the hoop C in four-dimensional space-time is replaced with the hyper-hoop VD−3; if D = 5,
then the hyper-hoop would be an area V2. However, in five-dimensional space-time, black
holes are not restricted to have a simply connected horizon; therefore, the applicabilities of the
hyper-hoop and the isoperimetric inequality to various black objects are left unknown. The
validity of (1) was investigated in several idealized models by Ida and Nakao [17] and Yoo
et al [18], who solved momentarily static, conformally flat, five-dimensional axisymmetric
homogeneous spheroidal matter and δ-function-type ring matter. Our purpose is to investigate
the generality of the hyper-hoop conjecture and the cosmic censorship conjecture in more
general situations.
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In this paper, we present two kinds of initial data; spheroidal and toroidal matter
configurations. We solve the Hamiltonian constraint equation numerically, and then search
apparent horizons. This study is the generalization of [17, 18]; we reproduce their results as
our code checks, and present also finite-sized ring cases. The definition of the hyper-hoop is
not yet definitely given in the community, so that we propose to define the hyper-hoop as a
local minimum of the area by solving the Euler–Lagrange-type equation.

This paper is organized as follows. In the next section, we explain how to set initial
data for five-dimensional space-time and how to search S3 and S1 × S2 apparent horizons and
hoops. In section 3, we show numerical results. The final section is devoted to the summary
and discussion. We use the unit c = 1 and G5 = 1, where c is the speed of light and G5 is the
gravitational constant of the five-dimensional space-time.

2. Basic equations and numerical issues

2.1. The Hamiltonian constraint equation

We consider the initial data sequences on a four-dimensional space-like hypersurface. A
solution of the Einstein equations is obtained by solving the Hamiltonian constraint equation
if we assume the moment of time symmetry. We apply the standard conformal approach [22]
to obtain the four-metric γij . As was discussed in [23], in 4 + 1 space-time decomposition, the
equations would be simplified with a conformal transformation

γij = ψ2γ̂ij , (2)

where γ̂ij is the trial base metric which we assume conformally flat:

ds2 = γ̂ij dxidxj = dx2 + dy2 + dz2 + dw2. (3)

The Hamiltonian constraint equation, then, becomes

�̂ψ = −4π2G5ρ, (4)

where ρ is the effective Newtonian mass density and G5 is the gravitational constant in five-
dimensional theory of gravity. We numerically solve equation (4) in the upper-half coordinate
region (x � 0, y � 0, z � 0, w � 0) with setting the boundary conditions as

∇ψ = 0 (at inner boundaries), (5)

and

ψ = 1 +
MADM

r2
(at outer boundaries), (6)

where

r =
√

x2 + y2 + z2 + w2 (7)

and MADM can be interpreted as the ADM mass of the matter. Practically, the boundary
condition, (6), is replaced with

(ψ − 1)r2 = const. (8)

and we apply

∂

∂xi
[(ψ − 1)r2] = 0 (9)

on the outer edge of our numerical grid. The ADM mass MADM, then, is evaluated from
equation (6).
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Figure 1. Axis of symmetry of our models: (a) spheroidal (spindle) configuration, and (b) toroidal
configuration. We consider the matter with uniform density. We adopt the coordinate as
equation (10) for case (a), while we use equation (11) for case (b).

As is described below, we consider two models of the matter distribution: spheroidal and
toroidal configurations. By assuming the axis of symmetry, both are reduced to effectively
two-dimensional problems (figure 1). For the spheroidal matter (figure 1(a)), we use the
metric

ds2 = ψ(R, z)2
[
dR2 + R2

(
dϕ2

1 + sin2 ϕ1 dϕ2
2

)
+ dz2

]
(10)

where

R =
√

x2 + y2 + z2, ϕ1 = tan−1

(
w√

x2 + y2

)
and ϕ2 = tan−1

(
y

x

)
.

For the toroidal case (figure 1(b)), on the other hand, we use the metric

ds2 = ψ(X,Z)2(dX2 + dZ2 + X2 dϑ1 + Z2 dϑ2) (11)

where

X =
√

x2 + y2, Z =
√

z2 + w2,

ϑ1 = tan−1

(
y

x

)
, and ϑ2 = tan−1

(
z

w

)
.

By assuming that ϕ1 and ϕ2 (ϑ1 and ϑ2 for the toroidal case) are the angles around the axis of
symmetry, the Hamiltonian constraint equation, (4), effectively becomes

∂2ψ

∂R2
+

2

R

∂ψ

∂R
+

∂2ψ

∂z2
= −4π2G5ρ, (12)

and

1

X

∂

∂X

(
X

∂ψ

∂X

)
+

1

Z

∂

∂Z

(
Z

∂ψ

∂Z

)
= −4π2G5ρ, (13)

respectively. We solve (12) and (13) using the normal successive over-relaxation (SOR)
method with red–black ordering. We use 5002 grids for the range (R, z) or (X,Z) = [0, 10]
with the tolerance 10−6 for ψ for solving equations (12) and (13). The presenting results are
the sequences of the constant MADM within the error O(10−2).

2.2. Matter distributions

We model the matter by non-rotating homogeneous spheroidal and toroidal configurations
with effective Newtonian uniform mass density. Our first model is the case with homogeneous
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spheroidal matter, which is expressed as

x2

a2
+

y2

a2
+

w2

a2
+

z2

b2
� 1, (14)

where a and b are parameters. This is the (4 + 1)-dimensional version of the earlier study of
Nakamura et al [4], and also the numerical reproduction of Ida and Nakao [17] and Yoo et al
[18]. The second is the case with homogeneous toroidal matter configurations, described as(√

x2 + y2 − Rc

)2
+

(√
w2 + z2

)2 � R2
r , (15)

where Rc is the circle radius of torus, and Rr is the ring radius (figure 1(b)). This case is
motivated from the ‘black-ring’ solution [5] though not including any rotations of matter nor
of the space-time. Nevertheless, we consider this is the first step for toroidal configuration,
since this is the generalization of [17] to the finite-sized matter cases.

2.3. Kretchmann invariant

After obtaining the initial data, we evaluate the Kretchmann invariant

I(4) = RabcdR
abcd , (16)

where Rabcd is the four-dimensional Riemann tensor, in order to measure the strength of gravity.
This is most easily evaluated in Cartesian coordinates as

I(4) = 16
∑
i �=j

[
2

(
∂ψ

∂xi

) (
∂ψ

∂xj

)
− ψ

∂2ψ

∂xi∂xj

]2

+ 8
∑
i �=j

[(
∂ψ

∂xi

)2

−
(

∂ψ

∂xj

)2
]2

+ 4ψ2
∑
i �=j

[
∂2ψ

∂xi2 +
∂2ψ

∂xj 2

]2

+ 8ψ

[∑
i

(
∂ψ

∂xi

)2
] [∑

i

∂2ψ

∂xi2

]
− 32ψ

∑
i

(
∂ψ

∂xi

)2 (
∂2ψ

∂xi2

)
.

2.4. Apparent horizons

For investigating the validity of the censorship conjecture and hyper-hoop conjecture, we
search the existence of apparent horizons. An apparent horizon is defined as a marginally
outer trapped surface, and the existence of the apparent horizon is the sufficient condition
for the existence of the event horizon. On the four-dimensional space-like hypersurface, an
apparent horizon is a three-dimensional closed marginal surface.

In order to locate the apparent horizon for the spheroidal configurations, after obtaining
the solution of (12), we transform the coordinate from (R, z) to (r, θ), using

r =
√

R2 + z2, (17)

θ = tan−1

(
R

z

)
, (18)

and search the apparent horizon on the R-z section [17, 18]. The location of the apparent
horizon, rM(θ), is identified by solving

r̈M − 4ṙ2
M

rM

− 3rM +
r2
M + ṙ2

M

rM

[
2ṙM

rM

cot θ − 3

ψ
(ṙM sin θ + rM cos θ)

∂ψ

∂z

+
3

ψ
(ṙM cos θ − rM sin θ)

∂ψ

∂R

]
= 0, (19)
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where dot denotes θ -derivative. We solve (19) for rM(θ) using the Runge–Kutta method
starting on the z-axis (θ = 0) with a trial value r = r0 and integrate to θ = π/2, with
interpolating the coefficients ψ and ∂ψ

∂xi from the data on the grid points. We apply the
symmetric boundary condition on the both ends. If there is no solution satisfying both
boundary conditions, we judge there is no horizon.

For toroidal cases, we transform the coordinate from (X,Z) to (r, φ), using

r =
√

X2 + Z2, and φ = tan−1

(
Z

X

)
. (20)

The location of the apparent horizon, rm(φ), is then identified by solving

r̈m − 4
ṙm

2

rm

− 3rm − r2
m + ṙm

2

rm

[
2
ṙm

rm

cot(2φ) − 3

ψ
(ṙm sin φ + r cos φ)

∂ψ

∂X

+
3

ψ
(ṙm cos φ − rm sin φ)

∂ψ

∂Z

]
= 0, (21)

with the symmetric boundary condition ṙ = 0 at both φ = 0 and π/2. When the matter is in
torus shape, an additional S1 × S2 apparent(ring horizon) horizon may exist. In order to find
a ring horizon, we adopt the coordinate as

r =
√

(X − Rc)2 + Z2, and ξ = tan−1

(
Z

X − Rc

)
. (22)

This marginal surface is obtained by solving the equation for r(ξ):

r̈m − 3ṙm
2

rm

− 2rm − r2
m + ṙm

2

rm

×
[
ṙm sin ξ + rm cos ξ

rm cos ξ + Rc

− ṙm

rm

cot ξ

+
3

ψ
(ṙm sin ξ + r cos ξ)

∂ψ

∂x
− 3

ψ
(ṙm cos ξ − r sin ξ)

∂ψ

∂z

]
= 0, (23)

where dot denotes ξ -derivative, with the symmetric boundary condition on the both ends at
ξ = 0 and π .

2.5. Area of horizons

From the obtained sequence of initial data, we calculate the surface area A3 of the apparent
horizons. If the obtained horizon is spheroidal configuration, the surface area of the horizon,
A3, becomes

A
(S)
3 = 8π

∫ π/2

0
ψ3r2

M sin2 θ

√
˙rM

2 + r2
M dθ, (24)

where dot denotes a θ -derivative. As for the toroidal cases, the surface area of S3 and S1 × S2

apparent horizons become

A
(T 1)
3 = 4π2

∫ π/2

0
ψ3r2

m cos φ sin φ

√
ṙm

2 + r2
m dφ, (25)

and

A
(T 2)
3 = 4π2

∫ π

0
ψ3(Rc + rm cos ξ)rm sin ξ

√
ṙm

2 + r2
m dξ, (26)

where dot denotes a φ-derivative and a ξ -derivative, respectively.
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2.6. Hyper-hoop

We also calculate the hyper-hoop for the five-dimensional hoop-conjecture which is defined by
a two-dimensional area. We try to verify the necessary condition of the black-hole formation
examined in [18]:

V2 � π

2
16πG5M. (27)

However, the definition of V2 is not so far defined apparently. We, therefore, propose to define
the hoop V2 as a surrounding two-dimensional area which satisfies the local minimum area
condition,

δV2 = 0. (28)

When the area of the space-time outside the matter is expressed by a coordinate r, then
equation (28) leads to the Euler–Lagrange-type equation for V2(r, ṙ).

For the spheroidal configuration, we express the area V2 using r = rh(θ) as

V
(A)

2 = 4π

∫ π/2

0
ψ2

√
ṙh

2 + r2
hrh sin θ dθ, (29)

or

V
(B)

2 = 4π

∫ π/2

0
ψ2

√
ṙh

2 + r2
hrh cos θ dθ, (30)

where dot denotes a θ -derivative. V
(A)

2 expresses the surface area which is obtained by rotating
with respect to the z-axis, while V

(B)
2 is the one with R-axis rotation. Then the hyper-hoop

V
(A)

2 is derived by

r̈h − 3ṙh
2

rh

− 2rh +
r2
h + ṙh

2

rh

[
ṙh

rh

cot θ − 2

ψ
(ṙh sin θ + rh cos θ)

∂ψ

∂z

− 2

ψ
(rh sin θ − ṙh cos θ)

∂ψ

∂R

]
= 0, (31)

while the hyper-hoop V
(B)

2 is derived by

r̈h − 3ṙh
2

rh

− 2rh − r2
h + ṙh

2

rh

[
ṙh

rh

tan θ +
2

ψ
(rh sin θ − ṙh cos θ)

∂ψ

∂R

+
2

ψ
(rh cos θ + ṙh sin θ)

∂ψ

∂z

]
= 0. (32)

We search the location of the minimum V2 by solving (31) and (32), applying the same
technique and the boundary conditions with those of horizons.

For the toroidal cases, the hoop is expressed using r = rh(φ) as

V
(C)

2 = 4π

∫ π/2

0
ψ2

√
ṙh

2 + r2
hrh cos φ dφ, (33)

or

V
(D)

2 = 4π

∫ π/2

0
ψ2

√
ṙh

2 + r2
hrh sin φ dφ. (34)

V
(C)

2 expresses the surface area which is obtained by rotating with respect to the z-axis, while
V

(D)
2 is the one with x-axis rotation. Then, the minimum V

(C)
2 satisfies the equation

r̈h − 3ṙh
2

rh

− 2rh +
r2
h + ṙh

2

rh

[
ṙh

rh

cot φ − 2

ψ
(ṙh sin φ + rh cos φ)

∂ψ

∂X

− 2

ψ
(rh sin φ − ṙh cos φ)

∂ψ

∂Z

]
= 0, (35)
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and V
(D)

2 satisfies

r̈h − 3ṙh
2

rh

− 2rh − r2
h + ṙh

2

rh

[
ṙh

rh

tan φ +
2

ψ
(rh sin φ − ṙh cos φ)

∂ψ

∂X

+
2

ψ
(rh cos φ + ṙh sin φ)

∂ψ

∂Z

]
= 0. (36)

We also calculate the hyper-hoop with S1 × S1 topology for the toroidal cases, V
(E)

2 ,

V
(E)

2 = 2π

∫ π

0
ψ2

√
ṙh

2 + r2
h(rh cos ξ + Rc) dξ. (37)

The minimum V
(E)

2 satisfies the equation

r̈h − 3ṙh
2

rh

− 2rh − r2
h + ṙh

2

rh

[−Rc + ṙh sin ξ

Rc + rh cos ξ
+

2

ψ
(ṙh sin ξ + rh cos ξ)

∂ψ

∂X

+
2

ψ
(rh sin ξ − ṙh cos ξ)

∂ψ

∂Z

]
= 0. (38)

3. Numerical results

3.1. Spheroidal configurations

First, we show the cases with spheroidal matter configurations. In figure 2, we display matter
distributions and the shape of the apparent horizon (if it exists). When the matter is spherical,
a = b (the cases of (a), (d) in figure 2), the horizon is also spherically symmetric and locates
at the Schwarzschild radius, rs. The horizon becomes prolate as the value b/a increases. We
cannot find the apparent horizon when length b is larger than b = 1.5 for a = 0.5 and b = 2.0
for a = 0.1. We see from (b) and (e) of figure 2 that the matter configurations can be arbitrarily
large but the apparent horizon does not cover all the matter regions. This behavior is the same
with (3 + 1)-dimensional cases [4] and our numerical results reproduce the results in [18]. If
we compare our five-dimensional results with four-dimensional ones [4], the disappearance
of the apparent horizon can be seen only for the highly prolate cases. (For example, for the
eccentricity 0.999 cases, the disappearance of the apparent horizon starts at the prolate radius
0.7 M in the four-dimensional case, while 2.0 rs in our case.) Therefore, we expect that an
appearance of a singular behavior is ‘relaxed’ in a five-dimensional case, and this tendency
would be the same for the higher dimensional cases.

The asterisk in figure 2 is the location of the largest Kretchmann invariant, Imax =
max

{
R

(4)
abcdR

(4)abcd
}
. For all cases, we see that the locations of Imax are always outside the

matter, except the cases of b = a.1 We show the contours of I(4) in figure 3. Figure 4 display
Imax as a function of b/a. We see that Imax monotonically increases even if there is no apparent
horizon. In the (3+1)-dimensional cases, the extremely elongated spindle evolves into a naked
singularity [4]. Our results suggest such evolutions also in the (4 + 1)-dimensional cases.

In figure 5, we show the surface area of the apparent horizon A3. We observe that A3

becomes the largest when the matter is spherical. If we took into account the analogy of the
thermodynamics of the black hole, this may suggest that the final state of the 5D black hole
shakes down to spherically symmetric.

1 The Kretchmann invariant expresses the strength of the curvature, which is determined by the gradient of the metric.
For example, when we solve a single star with uniform density, the maximum value of the metric appears at the center
of matter configuration, but the maximum value of the metric gradient appears off-center and likely at the outside of
the matter region. Therefore, our results of the location of the maximum Kretchmann invariant are not strange.
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Figure 2. Matter distributions (shadows) and apparent horizons (lines) for spheroidal matter
distributions. The sections of the axis-equator plane are shown. The sequence (a)–(c) is of
a = 0.5, and (d)–(f ) is of a = 0.1 (see equation (14)), of which we fix the total mass MADM = 1.
We cannot find an apparent horizon when b is larger than b = 3a for a = 0.5 (figure (c)) and
b = 20a for a = 0.1 (figure (f)). The asterisks indicate the location of the maximum Kretchmann
invariant, equation (16). We see that the maximum point is outside of the horizon for cases (b)
and (e).

In order to check the validity of the hyper-hoop conjecture, we prepared figure 6. The
hyper-hoops V

(A)
2 and V

(B)
2 are shown with the normalized value on the right-hand side of

equation (27), i.e. the validity of the conjecture indicates that the value is less than unity.
The area of the hyper-hoops V

(A)
2 and V

(B)
2 increases with b/a but V

(A)
2 remains smaller

than unity if the horizon exists. Therefore, the necessary condition of black-hole formation
(equation (27)) is satisfied for V

(A)
2 . We conclude that hyper-hoop conjecture is valid for the

spheroidal cases.

3.2. Toroidal configurations

We next show the results of the homogeneous toroidal matter configurations. Figure 7 shows
the two typical shapes of apparent horizons. We also show the contours of I(4) in figure 8.
We set the ring radius of toroidal configurations as Rr/rs = 0.1 and search the sequence by
changing the circle radius Rc. When Rc is less than 0.78rs , we find that only the S3-apparent
horizon (‘common horizon’ over the ring) exists. On the other hand, when Rc is larger than
Rc = 0.78rs , only the S1 × S2 horizon (‘ring horizon’, hereafter) is observed. Unlike the
cases of δ-function matter distributions [17], we could not find an example which shows that
both two horizons exist together.
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(a) (b) (c) 

(d) (e) (f ) 

Figure 3. Contours of Kretchmann invariant, log10 I(4), corresponding to figure 2.
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Figure 4. The maximum value of Kretchmann invariant Imax as a function of b/a for the sequences
of figure 2. Plots are normalized with the value of the spherical case, a = b. We see that Imax
increases monotonically in both cases.

We find that the value of Imax appears at the outside of matter configuration as well as the
spheroidal cases. Interestingly, Imax is not hidden by the horizon when Rc is larger (see the
case (c) of figure 7). This tendency is analogous to the spheroidal cases. Therefore, if the ring
matter shrinks itself to the ring, then a ‘naked ring’ (or naked di-ring) might be formed.

We show the surface area of the apparent horizons A3 in figure 9. In figure 9, the two
types of horizon monotonically decrease with Rc/rc, the largest one is when the matter is in
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Figure 5. The area of the apparent horizon A3 for the sequence of figure 2 is shown. The sequence
of a = 0.5 and 0.1 is shown in (a) and (b), respectively. Plots are normalized with the area of the
spherical case, a = b. In both cases, the horizon area monotonically decreases with b/a.
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Figure 6. The ratio of the hyper-hoop V2 to the mass MADM is shown for the sequence of figure 2.
The ratio less than unity indicates the validity of the hyper-hoop conjecture, equation (27). We
plot the hoops V

(A)
2 and V

(B)
2 both for the sequences of a = 0.5 and 0.1 in figures (a) and (b),

respectively. At large b/a, the hoops do not exist, but that range always includes the cases with
apparent-horizon formation. Figure shows that the hoop V

(A)
2 represents the hyper-hoop conjecture

properly.

the spheroidal one (Rc/rc = 0). We also observe that the common-horizon area is always
larger than the S1 ×S2 horizon area and the two are smoothly connected in the plot. If we took
into account the analogy of the thermodynamics of the black hole, this may suggest that if the
black ring evolves to shrink its circle radius then the ring horizon will switch to the common
horizon at a certain radius.

Figure 10 shows the hyper-hoops V
(C)

2 , V (D)
2 and V

(E)
2 for these matter configurations. We

plot the points where we found the hyper-hoops. We note that Rc/rs = 0.78 is the switching
radius from the common apparent horizon to the ring apparent horizon, and that V

(C)
2 and

V
(D)

2 are sufficiently smaller than unity if there is a common apparent horizon. Therefore,
equation (27) is satisfied for the formation of the common horizon. On the other hand, for the
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Figure 7. Matter distributions (shaded) and the location of the apparent horizon (line) for toroidal
matter configurations (with fixing the ring radius Rr = 0.1). The axis-equator plane is shown for
three circle-radius cases: (a) Rc = 0.07, (b) Rc = 0.78, and (c) Rc = 1.78 (see equation (15)).
The line is the location of the apparent horizon. We found the common horizon (S3) for (a) and
(b), while we found the ring horizon (S1 × S2) for (c). The asterisk indicates the location of the
maximum Kretchmann invariant, Imax. We see the maximum point is outside of the horizon for
case (c).

(a) (b) (c) 

Figure 8. Contours of Kretchmann invariant, log10 I(4), corresponding to figure 7.

ring horizon, we should consider the hoop V
(E)

2 in equation (27). In figure 10, in the region
Rc/rs > 0.78, V

(E)
2 exists only as part of this region and becomes larger than unity. Hence,

for the S1 × S2 apparent horizon, the hyper-hoop conjecture, (27), is not a proper indicator.
We conclude that the hyper-hoop conjecture, (27), is only consistent with the formation
of the common horizon in the toroidal case as far as our definition of the hyper-hoop is
concerned.

4. Summary and future works

With the purpose of investigating the fully relativistic dynamics of five-dimensional black
objects, we constructed sequences of initial data and discussed the formation of the apparent
horizons, the area of the horizons and the validity of the hoop conjecture.

We modeled the matter in two cases: a non-rotating homogeneous spheroidal shape, and
a toroidal shape under the momentarily static assumption. These two models are still highly
simplified ones, but the results agree  well  with  the previous semi-analytic works (both with
(3+1)- and (4+1)-dimensional studies) and we also obtained new sequences for finite-sized
matter rings.
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Figure 9. The area of the apparent horizon A3 for the toroidal matter distribution cases Rc/rc = 0.1.
Plots are normalized by the area of spherical case (Rc = 0). Two types of horizons do not exist
simultaneously. We see that both horizons’ area are smoothly connected at Rc/rs = 0.78, and
both monotonically decrease with Rc/rs .

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5

R
c
 / r

s

V
2 / 

(8
π2 G

M
A

D
M

)

Figure 10. The ratio of the hyper-hoops V2 to the mass MADM are shown for the sequence
of figure 6. The ratio less than unity indicates the validity of the hyper-hoop conjecture,
equation (27). We plot the hoops V

(C)
2 , V

(D)
2 and V

(E)
2 where they exist. The horizon switches

from the common horizon to ring horizon at Rc/rs = 0.78. This figure shows that the hoop V
(C)
2

and hoop V
(D)
2 represent the hyper-hoop conjecture for common apparent horizons properly, while

V
(E)
2 does not for the ring horizon.

We examined the so-called hyper-hoop conjecture, where the hoop is the area in the (4+1)-
dimensional version. We defined the hyper-hoop V2 as it satisfies δV2 = 0, and searched the
hoops numerically.

For the spheroidal matter cases, our results are simply the extensions of the previous
studies. The horizon is not formed when the matter is very thin shaped, the hyper-hoop
conjecture using our V2 is properly satisfied, and the maximum of the Kretchmann invariant
Imax appears at the outside of the matter. As was shown in the (3+1)-dimensional case
[3, 4], this also suggests the formation of a naked singularity when we start time evolution
from these initial data.
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While for the toroidal matter cases, both horizons and hoops can take two topologies, S3

and S1 × S2, so that we consider both. The apparent horizon is observed to switch from the
common horizon (S3) to the ring horizon (S1 × S2) at a certain circle radius, and the former
satisfies the hyper-hoop conjecture, while the latter does not. This is somewhat plausible,
since the hoop conjecture was initially proposed only for the (3+1)-dimensional gravity where
only the simply connected black hole is allowed.

From the area of the horizon and from the thermo-dynamical analogy of black holes, we
might predict the dynamical feature of the black ring. As we show in figure 9, the common
horizon has a larger area than the ring horizon, so that if the dynamics proceed to shrink its
circle radius, then a black ring will naturally switch to a single black hole. However, if the
local gravity is strong, then the ring might begin to collapse into a ring singularity, that might
lead to the formation of the ‘naked ring’ since Imax appears on the outside of the ring (actually
double rings, both on the top and the bottom of matter may be formed) for a certain initial
configuration. This is still a speculation and requires full dynamics in the future.

The initial-data sequences we showed here do not include rotations in matter and space-
time, which is one of our next subjects. We now begin studying the generalization of our
models including the known exact solutions, that we hope to report elsewhere soon. We are
also developing our code to follow the dynamical processes in five-dimensional space-time;
there we expect to show the validity of the cosmic censorship and hyper-hoop conjecture for
various black objects.
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