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Constraint Propagation in (N + 1)-Dimensional
Space-Time
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Higher dimensional space-time models provide us an alternative interpretation of nature,
and give us different dynamical aspects than the traditional four-dimensional space-time
models. Motivated by such recent interests, especially for future numerical research
of higher-dimensional space-time, we study the dimensional dependence of constraint
propagation behavior. The N 4 1 Arnowitt-Deser-Misner evolution equation has matter
terms which depend on N, but the constraints and constraint propagation equations
remain the same. This indicates that there would be problems with accuracy and stability
when we directly apply the N + 1 ADM formulation to numerical simulations as we
have experienced in four-dimensional cases. However, we also conclude that previous
efforts in re-formulating the Einstein equations can be applied if they are based on
constraint propagation analysis.
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1. INTRODUCTION

Higher dimensional space-time models have been investigated from many
viewpoints in physics. Current research interests come from brane-world models
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that try to solve the hierarchical problem in the unified theory (e.g. [1, 2]). Since
these models can be probed by future Large Hadron Collider experiments, a lot
of research is being undertaken. Even apart from such brane-world models, many
new physical results in higher dimensional general relativity are reported. Although
we do not have space to list them all, we mention the discoveries of the black-
hole solutions in five-dimensional space-time (e.g. [3]) that violate the traditional
black-hole no-hair conjecture, the possibility of new stable configurations of black-
string models (e.g. [4, 5]), and the modified version of cosmic hoop conjecture
(e.g. [6]).

In order to investigate such topics, especially their dynamical and nonlinear
behavior, numerical simulations are necessary. Numerical relativity is a promising
research field, but it is also true that we have not yet obtain the recipe to per-
form long-term stable and accurate dynamical evolution. Many trial simulations
of binary compact objects have revealed that the mathematically equivalent sets
of evolution equations are showing different numerical stability in the free evolu-
tion schemes. Current research target in numerical relativity is to find out better
reformulation of the Einstein equation (see reviews, e.g. [7-9]).

In this Letter, we study the dimensional dependence of constraint propagation
in the standard Arnowitt-Deser-Misner (ADM) formulation of the Einstein equa-
tion (space-time decomposition) [10, 11]. The reader might think that starting with
the ADM equation is old-fashioned since recent large-scale numerical simulations
are not using the ADM equation due to its stability problem. However, we still
think that ADM is the starting formulation for analyzing the dynamical behavior
both analytically and numerically. The plenty of re-formulations of the Einstein
equations have been proposed in the last decade. Most of them are starting from the
ADM variables. The practical advantages of such re-formulations are extensively
under investigation by many groups now, but, in our viewpoint, the essential im-
provements of them can be explained in a unified way via constraint propagation
equations [8]. As we have shown in [12, 13], the stability problem of ADM can be
controlled by adjusting constraints appropriately to evolution equations, and that
the key idea also works in other formulations [14, 15]. Therefore the analysis of
the ADM equation is still essential.

The idea of constraint propagation (originally reported in [16, 17]) is a useful
tool for calibrating the Einstein equations for numerical simulations. The modifi-
cations to the evolution equations change the property of the associated constraint
propagation, and several particular adjustments to evolution equations using con-
straints are expected to diminish the constraint violating modes. We proposed to
apply eigenvalue analysis to constraint propagation equations and to judge the
property of the constraint violation. The proposed adjusted equations have been
confirmed as showing better stability than before by numerical experiments (e.g.
[18, 19]). The purpose of this letter is to show this idea is also applicable to all
higher dimensional cases.
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2. N+1-DIMENSIONAL ADM EQUATIONS
We start from the (N + 1)-dimensional Einstein equation,

1
G;w = R;w - EguvR + g/u)A = 87[Tuv’ (1)

and decompose it into N-dimensional space plus time, using the projection
operator L1/,

yi =8t 4 ntn, = LM, 2)

where n* is a unit normal vector of the spacelike hypersurface X, and we write
the metric components,

ds? = —a?dt* + y;;(dx" + Bd)dx’ + pldr), 3)

where y;; expresses N -dimensional intrinsic metric, and o and B’ the lapse and shift
function, respectively. (Greek indices proceed 0, 1, ..., N, while Latin indices
proceed 1, ..., N).

The projections of the Einstein equation are the following three:

Guntn” =8m Ty, n"n" =8mpy, )
Gun" L), =8x Ty,yn" L) =—8nJ, ©)
Gu L) Ly =8n T, LI 1) =81S,, (6)
where we defined
T,, = punyn, + Jn, +Jyon, + Sy, @)

which gives T = —py + St,.
To express the decomposition, we introduce the extrinsic curvature K;; as

Kij = —J_fLJ_IJ)VVI’lH

1
= Z(_azyz‘j + D;B;i + D;B)), (8)

where V and D; is the covariant differentiation with respect to g,, and y;;,
respectively.
The projection of the Einstein equation onto ¥ is given using the Gauss
equation,
MR =RE L L] — KKy + K[ Ky, ©)

and the Codazzi equation,

DK/ — D;K = —R,on° 1", (10)
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where K = K 1’ . For later convenience, we contract (9) to

WR;j =RE, (88 4+ nun®) — KKij + KKy, (11)
MR =R+ 2R,wn"n" — K*+ K K. (12)
Egs. (4) and (12) give the Hamiltonian constraint, Cy =~ 0, where

Cu = (G — 8 Ty)ntn"
1 .
= 5(<N>R+1<2—1r<’11(,-j)—8m>H — A, (13)
while (5) and (10) give the momentum constraint, Cy;; &~ 0, where
Cui = (Gpy — 8Ty n" L]
:DJ‘K[-j—D,'K—STF],'. (14)

Both (13) and (14) have the same expression as those of the four-dimensional
version.
The evolution equation for y;; is obtained from (8), which is again the same
expression as the four- dimensional version.
The evolution equation of K;; is obtained also from (5). The contraction of
(1) gives
1 2
Rij =8n | Sij — vl ) TR 15)
where we used g,,8"" =N + 1. A straightforward calculation of R*;,; =
d,T;; — 9Ty, + Tk T, = T),T7, where I'l,, is the Christoffel symbol, gives
o Ryipin'n” = (3 Kij) + (D Djer) — B*(DiKi)
— (DK — (DiBYKy; + aKi K. (16)
Substituting (15) and (16) into (11), we obtain
9 Kij = a™R;; + aKK;; —2aK[K;, — D;Dja

+ BX(DiKij) + (D BK i + (D: BHKy,

1 2
—8ra (Sij - ﬁ]/UT> - m)/jjl\, (17)
that is, only the matter and cosmological constant related terms depend on the
dimension N.
If we have matter, we need to evolve the matter terms together with the metric.
The evolution equations for matter terms can be derived from the conservation
equation, V#T,, = 0. In the next section, we will discuss them together with the
constraint propagation equations.
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3. N+1-DIMENSIONAL CONSTRAINT PROPAGATION

The constraint propagation equation, 9,(Cg, C wi)T, can be derived in many
ways, and among them the derivation via the Bianchi identity [17] may be the
easiest.

In general, we write a N 4 1-dimensional symmetric tensor S,,,, which obeys
the Bianchi identity, V"S,,, = 0. Let us express S, by decomposing as

S =Xnyn, +Y,n, +Y,n, +72,,. (18)
The normal and spatial projections of V"S,,, become

n"v'S,, = —=Z,,(V#n") — V*Y, +Y,n*V,n"

—2Y,n,(V'n") — X(V"n,) — n, (V*X), (19)
]’I;MVUSMU = V”Z,‘M + Y[(Vﬂi’lﬂ) + YM(VMI’Z,)
+ X (VA n)n, + nu(VY)), (20)

where we used V, while [17] uses a different operator. For convenience, we rewrite
them

an* V'S, = —(0,X) + aKX + B/ (3;X) — ay’ (0;Y;) + (3 Vmn)
x (" = /2"y Y ;= 2" (0@ + K Zy, (21)
—ah!' V'S, = —(0,Y;) — (%)X +aKY; 4+ B/ (0;Y;) + v (0 Bu)Yi
— BV P @yppYi — ey (O Zij) — ;0021 + (1/2)0(Bry,;0Z"
+ay™ @uyi)Z] — 1/2eay™ @ ym) 2] (22)

respectively.

If we substitute (S,., X, Y;, Zij) = Ty, pu, Ji, Sij) into (21) and (22) and
assume VHT,, =0, then we obtain the matter evolution equations, d;0y and
8,],‘. If we substitute (S;uu X, Y,', Z,’j) = (Guv — SJTTMU, CH, CMis KVijCH) with
k = const. and assume V#(G,, —8mT,,) =0, then we obtain the constraint
propagation equations, d,Cy and 9,Cy;. [The parameter x corresponds to adding
atermto (17), +(k — 1)Cy.]

This derivation does not depend on the dimension N at all. Therefore the
evolution equations both for the matter and constraints remain the same with those
in the traditional four dimensional version.

The constraints include the extrinsic curvature terms, and the evolution equa-
tion of K;; changes due to N as we saw in (17). Interestingly, however, such
changes will be cancelled out and the resultant constraint propagation equations
remain the same.
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This means that a series of constraint propagation analyses can be directly
applied to higher dimensional space-time. That is, the standard ADM evolution
equations are likely to fail for long-term stable simulations. However, previously
proposed adjustment techniques (e.g. [12, 13]) are also effective.

For example, constraint amplification factors (i.e. the eigenvalues of con-
straint propagation matrix) in Schwarzschild space-time [eq. (47) in [13]] are
(0, 0, & f (r)) for four-dimensional standard ADM evolution equations, where f ()
is a complex-valued function. In the five-dimensional Schwarzschild or black-
string case, they become simply (0, 0, 0, &£ f(r)).

4. REMARKS

Motivated by the recent interests in higher dimensional space-time, we
checked the constraint propagation equations based on the N 4+ 1 ADM scheme.
The evolution equation has matter terms which depend on N, but we show the
constraint propagations remain the same as those in the four-dimensional ones.
This indicates that there would be problems with accuracy and stability when we
directly apply the N + 1 ADM formulation to numerical simulations as we have
experienced in four-dimensional cases. However, we also conclude that previous
efforts in re-formulating the Einstein equations can be applied if they are based on
constraint propagation analysis. The generality holds for other systems when their
constraints are written in the form of (18).

Since we only used the Bianchi identity in the core discussion, the assertion
is also applicable to brane-world models. In the context of the Randall-Sundrum
brane-world models [2], people study the modified four-dimensional Einstein
equations [20], which are derived from five-dimensional Einstein equations with
a thin-shell (3-brane) approximation. The terms there additional to the standard
ADM (see eq.(17) in [20]) include extrinsic curvature (due to shell-normal vector),
cosmological constant(s), and five-dimensional Weyl curvature. These terms, how-
ever, can be interpreted as a single stress-energy tensor which obeys the Bianchi
identity. Therefore the properties of the constraint propagation equations are the
same as the above (from the five-dimensional space-time viewpoint). Our propos-
als for the adjustments [12, 13] are also valid in brane-world models.

We hope this short report helps numerical relativists for developing their
future simulations.
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Note added in proof: After we submitted the article, we found that Anderson and
Tavakol posted a preprint (E. Anderson and R. Tavakol, gr-qc/0309063) on the
ADM formulation in the large extra dimensions. The detail PDE analysis can be
seen in their article, but the constraint propagation analysis is not available there.
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