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Quasispherical approximation for rotating black holes
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We numerically implement a quasispherical approximation scheme for computing gravitational waveforms
for coalescing black holes, testing it against angular momentum by applying it to Kerr black holes. As error
measures, we take the conformal strain and specific energy due to spurious gravitational radiation. The strain
is found to be monotonic rather than wavelike. The specific energy is found to be at least an order of magnitude
smaller than the 1% level expected from typical black-hole collisions, for angular momentum up to at least
70% of the maximum, for an initial surface as closer as3m.
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I. INTRODUCTION strong waveg5] around the black hole as in other studies.
We consider two measures of the error introduced by the

A quasispherical approximation scheme in-a2 decom-  approximation. First, the practical measure is the wave form
position of space-time has recently been introdJdddThis  of the spurious strain, as compared to signals expected to be
proposal is with the aim of providing a computationally in- measured by interferometers. Secondly, we measure the spe-
expensive estimate of the gravitational waveforms produceéific energy, i.e., the ratio of the radiated eneigyto the
by a black-hole or neutron-star collision, given a full numeri- original massm; this is a conservative measure, as it involves
cal simulation up tdor close to coalescence, or an analyti- summing the errors over all angles of the sphere, whereas
cal model thereof. observation is restricted to a particular angle.

The scheme truncates the Einstein equations by removing In principle these quantities depend on only the spin pa-
second-order terms which would vanish in a sphericallyrametera/m, the relative initial radius,/m and, in the case
symmetric space-time, see Bishepal.[2]. Thus when the of the strain, the angle. For the approximation to be useful,
linearized fields vanish, spherical symmetry is recovered irihe error should be significantly less than the values expected
full. Unlike previous work on null-temporal formulations for a realistic black-hole collision. Typical values for the spe-
[2,3], a dual-null formulation is adopted here, i.e., a decom<ific energy obtained from numerical simulatidég or from
position of the space-time by two intersecting foliations ofthe close-limit approximatiofi7] have increased from early
null hypersurfaces. The technical advantages of the schen@&stimates to around 1% if the initial relative moment{8h
include that only ordinary differential equations need beor angular momentuni9] is appreciable. The theoretical
solved, and that the dual-null formulation is adapted to ralimit on how badly an approximation might perform is much
diation extraction. The advantages of applicability includehigher: 29% of the mass of a maximally rotating Kerr black
that no prescribed background is required and that arbitrariljiole may be extracted by the Penrose pro¢&8
rapid dynamical processéslose to spherical symmejnare The article is organized as follows. Section Il describes
allowed. The pressing question concerns how well thghe dual-null formalism, the quasispherical approximation
scheme handles deviations from spherical symmetry. Thand the observables, strain and energy. Section Il describes
principal such deviation in the context of coalescing blackour model and numerical integration procedures. The nu-
holes is expected to be due to angular momentum. The primerical results are shown in Sec. IV and we summarize the
mary test case is therefore Kerr black holes, the unique starticle in Sec. V.
tionary vacuum black holes.

This article reports a numerical implementation of the
quasispherical approximation and its application to Kerr Il. FORMULATION AND APPROXIMATION
black holes, taking Boyer-Lindquist quasispheres. Since Kerr A. Dual-null formulation

spacetime is stationary and contains no gravitational radia- Th isoherical imati6il is based dual
tion, what we will evaluate in this article is the spurious e quasispherical approximatioh] is based on a dual-

gravitational radiation produced by the approximation. Theull formulation[11] of Einstein gravity{ 12], summarized as

P ; ; : ; follows. One takes two intersecting families of null hyper-
situation is quite different from adding perturbati or 5 .
q gp ol surfaces labeled bx~. Then the normal 1l-forms1~=

—dx* satisfy
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e'=—g*n",n"). (2.2 A,*1=0, (2.14

Then the induced metric on the transverse surfaces, the spa: . e -2
tial surfaces of intersection, is found to be where * is the Hodge operator df, satisfying *1=*0" %

Taking quasi-spherical coordinates=(6,¢) such that *
h=g+2e 'n*en", (2.3 =singde/\d¢, Q! is the quasi-spherical radius. In an as-
ymptotically flat space-time, it becomes convenient to use
where® denotes the Symmetric tensor prOdUCt. The Covari'the Conforma"y rescaled expansions and shears
ant derivative ofh is denoted byD. The dynamics is de-
scribed by Lie transport along two commuting evolution vec- 9.=0Q710., (2.15
torsu. :

[uy,u_]=0. (2.4 s:=Qo., (2.1

Specifically, the evolution derivatives, to be discretized in a>nee they are finite and generally nonzero at null infidiity

numerical code, are ) ) o
B. Quasispherical approximation

Ai:“‘“:’ (29 Of the dynamical fields and operators introduced above,

($+,0+,0,D) vanish in spherical symmetry, while
(h,f,0.,v.,A.) generally do not. The quasispherical ap-
proximation consists of linearizing ins{ ,o. ,w,D), i.e.,
S.=1lU.. (2.6 setting to zero any second-order terms in these quantities.
- - This yields a greatly simplified truncatida] of the full field
In a coordinate basisu(, ,u_;e) such thatu.=4g/dx*, equations, the first-order dual-null form of the vacuum Ein-
wheree;=4d/9x' is a basis for the transverse surfaces, thestein systenf12]. In particular, the truncated equations de-

where 1 indicates projection byh and L denotes the Lie
derivative. There are two shift vectors

metric takes the form couple into a three-level hierarchy, the last level being irrel-
o _ o _ evant to determining the gravitational wave forms. The
g=h;j(dx +s,dx" +s_dx7)®(dX +¢, dx" +sLdx") remaining equations are the quasispherical equations
—2e Tdx"®@dx". (2.7 ALQ=—-1029., (2.17)
Then (,f,s..) are configuration fields and the independent A f=p (2.19
momentum fields are found to be linear combinations of - = '
0, =*L.*1, (2.9) Adi=—v 0., (2.19
o.=1L.h—6.h, (2.9 Asd:=—Q(39,9_+e "), (2.20
ve=L.t, (2.19 Aive=—0230,9 +e ) 2.2
—1af
o=zeh([l-.1.], (217 and the linearized equations
where an asterisk is the Hodge operatohaindL .. is short- A k=0 22
hand for the Lie derivative along the null normal vectors £RT258+, (.22
l.=u.—s.=e fg~i(n%). (2.12 Ais-=0(s, -k ts_—309-5.). (2.23

Then the functions).. are the expansions, the traceless bi-These are all ordinary differential equations; no transverse
linear formso .. are the shears, the 1-form is the twist, derivatives occur. Thus we have an effectively two-
measuring the lack of integrability of the normal space, andlimensional system to be integrated independently at each
the functionsy.. are the inaffinities, measuring the failure of angle of the sphere.
the null normals to be affine. The field9(,0. ,v. ,0) The initial-data formulation is based on a spatial surface
encode the extrinsic curvature of the dual-null foliation.orthogonal tol . and the null hypersurfaces. generated
These extrinsic fields are unique up to duality>* and from Sby |., assumed future pointing. The initial data for
diffeomorphisms which relabel the null hypersurfaces, i.e.the above equations ar€)(f,k,J.) onSand . ,v.) on
dx*—er=dx™ for functions\ .. (x™). 3. . We will takel, and!|_ to be outgoing and ingoing,
It is also useful to decompogseinto a conformal factof) respectively.
and a conformal metrik by

C. Strai
h=0"2%, (2.13 rain

The variables are directly related to physically measurable
such that quantities. In particular,
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17
€= —J kdr (2.249
2]y

is the transverse strain tensor measured along a worlgline

normal to the transverse surfaces, whierel L,k in terms

of a vectorA=4/dr tangent toy. For a detector at large
distance, one may apply the linearized approximation, where
2¢ reduces to the transverse traceless metric perturbation of
a linearized plane gravitational wave. In a weak gravitational
field, one may use Newtonian physics, whereeduces to

the Newtonian strain tensor. Thus the displacements to be
measured by an interferometer are

4l
|—=e(e,e), (2.2 FIG. 1. The region of numerical integration is shown as the
shaded region in the picture. Initial data is prescribed on a spatial
where the unit vectoe is the direction of displacement. surfaceS of constant Boyer-Lindquist=r, andt, and the null
Writing A=a* I, +a" | _ yields hypersurfaces.. generated from it. O%_ (3,), thex™ (x*)
coordinate is set so as to cover the regiorny<r=<rqy (ro=r
1 N 3 <nry), where XXA~1 andn>1 are constants to be set by hand.
€= Ef Q(a"s,+a s_)dr. (2.26
Y

the specific energ/m atJ* as a measure of the strength of
a black-hole collision, following various referencg&—9|.
This is the fraction of the original mass energy which has
1 radiated away.

j s_dx™,

Since the strain vanishes at future null infinity, it is con-
venient to use the conformal strain tensor

(2.27)

E=5

2

. . . . I1Il. MODEL AND NUMERICAL PROCEDURES
where the integral is at constaxt. We will denote its plus

and cross components By, =&, ande . =&, . In order to A. Model: Kerr black hole
compare with observational results, one converts back to the a¢ ur model. we take a Kerr black-hole geometry
strain: ’

A sir? 6
ds?’=— < [dt—asir? 8d¢]?+ ——[(r2+a?)d¢p—adt]?
-3, 228 51 $17+ —5—[(r*+a’)dp—adt]
. . E 2 2
whereR is the distance between the source and the detector. + Kdr +2d67, (3.9
D. Energy
, o where
We define the energy flug of the gravitational waves, or
more conveniently, the conformal energy flyx Q" 2¢, as
the 1-forme=¢,dx"+ ¢_dx~, where A=r?-2mr+a? (3.2
f ab,cd
€' 9k¥k™ s+ acS < pd
b= 64 : (2.29 >=r?+a’cog 6, (3.3

These expressions have the same form as those for the con- )
formal Bondi flux atJ* [1], but we propose using them andm is the mass andm the angular momentum. The ho-

locally. Theng_ is the outgoing flux ands, is the ingoing  "zon radius is denoted by,=m+ ym“—a“. We take the

flux. The corresponding enerdy of the gravitational waves duasispherical approximation adapted to the@oyer-
is then given by Lindquis coordinates, i.e., the initial surfa&s of constant

r=r, and constant, as depicted in Fig. 1. The inaccuracy of
R the quasispherical approximation as measuredtbhy then
ALE= jg e (2.30 depends in principle only oa/m andr,/m. We expecE/m
to be monotonically increasing &/'m, from zero ata=0 to
with the initial conditionE|s=0. Thus the Bondi energy at a maximum at=m, since angular momentum is the cause
J* is E+E,, whereE, is the Bondi energy at the intersec- of the asphericity. SimilarlyE/m is expected to be mono-
tion with %, , which in the Kerr case will be just the tonically decreasing irry/m, to zero at infinity, since the
Arnowitt-Deser-Misner(ADM) massm. We propose using approximation should be better at large distances.
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B. Initial data

An explicit dual-null form of the Kerr metric is not known
except on the symmetry ax[43] or in the Schwarzschild
case, as the Kruskal form. Although there is an effort for this
direction[14], we did not find explicit double-null coordi-
nates which are well behaved at the outer horizons and in-
finity, despite trying changes in angular coordinate and
Kruskal-type rescalingElL5]. However, we can construct the
initial data analytically as functions of (6), then convert to FIG. 2. The dual-null integration scheme. In order to obtain the
the required functions ofx®, 6), as follows. We remark that data at gridug ", we need bothup andug*s .
our initial surfaces are. ., and the following method ap-

plies outside the horizons. 07%,(0%3) | by
The null normal vectors are initially given by =m=f +3mr?+a*(r—m)cos’ 6.
E 1/2 1/2 (3'12)
|+|2t:(m) (9ti(i) g, (34 To complete the initial data construction, we need to
know the initial data or® . as functions of x*,6). So we
where the normalization is such that need to knowr|2t as functions of x*,6). This is deter-
mined by the equations
fls=0. (3.9 A\ 12
The apparent degeneracy/at a? sir? 6 is just the boundary Aarls, = (E) ’ (3.13
of the ergoregion wherd; becomes spatial; the dual-null
coordinates extend through. We also fix giving
— r 22 1/2
vls =0, 36 s == _) ar’ (3.14
+ o A

which means that™ |y are affine parameters. This implies

fl. =0, fixing || and therefore locally determining the where the integral is along a curve of constaft¢). Note

that theA factor means that we take&outside the horizons

dual-null foliation. . r=ry, which anyway is the region of interest. We numeri-
The quasi-spherical conformal factor is cally integrated Eq(3.14) using a fourth order Runge-Kutta
method(Fehlberg methog then inverted. This was checked
Q=[(r2+a?)?2—Aa?sir? ] 14 (3.7) against the analytic solution in the equatorial plaen/2:
which is real and positive. Then we obtain the conformal x*[s . =*\2[JVA+min(r—m+A)]Fc. (3.19
metric B
As mis an overall scale, we fixed it to unity.
Sir? 9
k=Q%3d6>+ 0% d¢?, (3.8 C. Evolution procedures

Here we describe our numerical procedures. We have a set
and the conformally rescaled expansions and shears of ordinary differential equations in two variables. As
pointed out by Gundlach and PullifiL6], free evolution
schemes in such a system may lead to unstable evolution.
9. |e=+ liﬂgu 3.9 This fact was also seen in our experience, and we developed
ST N2y ' ' a kind of predictor-corrector scheme similar to that of Ha-
madeand Stewar{17].
The actual steps we took are the following. The set of

[ A sir? 6 variables isu=(Q,f, 9. ,v. k i-
_ 2 A5\ a2 o 2 2 J,04 v+ Kap,S+ap). L€t us schemati
Sely, =% ZEQ va'sire 0<d0 Q“Ezdd) ) cally express a sefi at a pointx” =k on a sliceX _(x*
(3.10  =n) asuj. The datau} "' is determined from both}*} and
ug as in Fig. 2. Suppose we have already all the dauj}éi
where and uE_

(1) First, we evolve along the" -direction, say fromuy to
U=-20"5,Q=2r(r>+a?—(r—m)a?sir? 6, up*.  We have a set of equations for
(31]) (Qvfyﬁiayf!kabig*ab)’
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A+Q:—%QZ{}+ ) (3'16) @
1.2x10°
A f=v,, (3.17
Aydy=—v, 9, (3.18 - Lo
E
ALY _=—Q(39,9_+e D), (3.19 L\i’éfs.()xw”
2
Ayv_=—0%}9,.9_+e "), (3.20 § 6.0x10”
% L
A Kap=Qs ¢ ap, (3.2 4.0x107
Ais_ap=Q(s+ acdeg—db_%ﬂ—g-# ab)- (3.22 2oxto” L L | L
0.0 0.5 1.0 1.5 2.0 25 3.0
The step is integrated using the Fehlberg method. Note that <
we do not have equations for evolving ands, , therefore (b)
we have to interpolate them usingv (,s, .p)p and _
(v4 .54+ a)k . The latter was linearly extrapolated for the B I A S |
first iteration, but will be updated after an integration along 3.0x10° [ /*”’—'_'_40—__::__'
the x~ -direction (next step has been done. - E / ]
(2) Secondly, we evolve along the™ -direction, from E 20x10° L
1 1 : & [
up i toug"t. We have a set of equations for (,s; ap), FTR: / '''''' .. .
3 r /e - r=40
A v, =—0%39,9_+e "), (3.23 8 ooxoh [ / el i
&g [ I'a
A s ap=Q(s+ acdeg—db_%ﬁ-#;—ab)v (3.29 10x10 ¥
for completing the set;, but we also evolvey. ,Q andf by 20x10%¢
A_Q=-30%_, (3.29 .3'OXI0-60.;1| ~ ‘5‘.0‘ - ‘10‘.0‘ - .1;.0‘ - ‘20‘.0‘ - I?::.o‘ - ‘3(_1.0
A_f=v_, (3.26
FIG. 3. Specific energig/m for a/m=0.1.(a) E/m is plotted as
A Y =—v O, (3.27 a function of the ingoing null coordinate” for each constant out-
going null coordinat™ =0.0,3.9 . . . ,30.0. We set ,=4.0 for this
A Y, = _Q(%ﬁ+ 9+ e—f). (3.29 plot. (b) The integratede/m over the ingoing null coordinate™ is

shown as a function of the outgoing null coordinate We show

Here again we have to interpolate and»_ in integrating  P0thro=3.0 and 4.0 cases. We see that the specific energy con-
the above, and we use a cubic spline interpolation usinderges to a particular positive value in thé direction, as expected.
(v-.s_an)i ' (1=ki=<k), where the datay(_,s_ap)i"" S o

was given in the previous stef). values ofr ; anda. We took 51 grid points in the™ direction

(3) We check the consistencies of the evolution, by moni-and 11 grid +points ing=[0,7/2], and evolved with grid
toring the differences of Ky, 9. ,Q,f)} from the above Separatiomx”=0.5Ax".
steps(1) and (2). If they are all within a tolerance, then we
finish this evolution step by updating’( ,s; 4,9+ ,€,f)
as a value auﬂ“. If not, we repeat back to the stép).

We construct a numerical grid ix™ space with constant Recall that our principal measures of the gravitational ra-
spacing in each direction. The iteration procedures are condiation are the conformal straia (2.27) and the specific
pleted a couple of times at each grid point. The results showrenergyE/m (2.30. Since we are using conformal variables,
in this article are obtained by setting the tolerance in thewve expect that we can evolve towards the asymptotically flat
above step(3) to 10°°. The code was tested for the region without long-term evolution in the" direction. In
Schwarzschild case, for which the analytic expression irFig. 3, we plotted the specific energy/m at the boundaries
dual-null coordinates is known; the calculated expangion  of the integration region. We integrated the E equation of
differed from the exact expression to within 10 (2.30 along the hypersurfac®, (x~ =0), settingE=0 on

In the next section, we present our evolutions of a KerrS(x*=x~=0), then integrate& using theA _E equation at
black-hole space-time under this quasispherical approximaeach constank™. We plottedE as a function ofx™ at a
tion. We chose the initial null slicg ~ so as to cover the constanix™ surface in Fig. 8). We see thaE is converging
region 1.25,<r<r,. We stopped the evolution at* =30, to a line(the solid line in the figurg and not diverging even
which corresponds to being 25-30m, depending on the close to the black holéat largerx™). Figure 3b) plotsE at

IV. NUMERICAL RESULTS
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0.0x10° -
o LOX10% o [ SuRnRAAE ' '
B N L S
I -4 [ . ~ e
& 20x10" | ° [ . -
g r = i g
= 0x10% [ J I Q. Tl
—~ r % - .
x # [ ~N ~e
£ 4.0x10* | -L0x10™* "‘ Ty
k| r ~ [ N <
E [ x 8
2 5.0x10" k] [ .
g £ 2 F -
g r x*= 6.0 £ -15x10* v
s r =
% -6.0x10 = r .
S i =30 E g i ~..
7.0x10" [ o Xl S aox104 [| 6=(1/8)m
E ] 8 [----- 6= (1/4)m
n: X 1 | —---- 0=G@)n
8.0x10™ L L L : : [ —— g=
0.0 0.5 1.0 15 2.0 25 3.0 I o=W2m
25x10™ 1 I 1 1 1
X 0.0 05 1.0 15 2.0 2.5 3.0

FIG. 4. Conformal straim . for a/m=0.1 andry=4.0. The plot
is for the equatorial plan@= /2, showing the convergence of (b)
these lines in the* direction. Lines are ok™=3.0,6.0,9.0. . .,

0.0x10°
and 30.0. We remark that these lines are not wavelike.

-1.0x10°

the final value ofx~ as a function oix™. We see from the
figure that the energy measured for increasifigconverges

/2 at x*=30.0

-2.0x10°

/

at some value, as expected. @ “
For the same set of parameters, we also plot the evolution £ 30x10°* -
behavior of the conformal strain in Figs. 4 and 5. The cross T
componentg . =&, , is zero in this model, so only the plus g 40x10°
components . =&,, is needed. The conformal strain is cal- E .
culated from Eq(2.27) as a function ok~ at constank™* by £ BOx107 -
settinge ., =0 atx™ =0. We again observe that. converges g R
to particular lines(the solid line$ as x* increases, again B T BT
reflecting the conformal variables. The line xf =30.0 in <
Fig. 4, therefore, is close to the wave form for observers
infinitely far from the source. FIG. 5. Conformal strairz . for the same parameters as Fig. 4.

il . . .
Note that the horizontal axis in Fig. 4 is coordinate, (a) e, atx"=30.0 for differentd. We see that the maximal strain

. - . occurs in the equatorial plané= /2, as expectedb) The depen-

e b o 10 arce, see £ Gonc ol anm. T Ines st for h a1 365

U . = /2. Both solid lines are equivalent with the solid line in Fig. 4.
tance is about 5ri/M o) u sec, translated from our units
=G=1. Our plots in this article, therefore, cover a quite quasispherical approximation. The converged conformal
short time period compared with the typical millisecond timestrain (k™ =30 lines in Fig. 4 is increasing as the ingoing
scale of gravitational waves from a Kerr black hbl@o coordinatex™ approaches the black hole horizon. However,
obtain longer time scales we would have to integrate closeif we extrapolate this magnitude to the horizomhich will
to the horizon, which causes numerical difficulties due to theéde reached around ~6.0 for this choice of parameteit is
infinite redshift.(This difficulty can be overcome using more still many orders of magnitude less than expected values.
computational resources, but becomes rather expehsive. Since Kerr spacetime is stationary, and its deviation from
However, for a dynamically evolving black hole, the eventSchwarzschild spacetime is also stationary, a quasispherical

horizon has finite redshift and so could lie in the numerical@PProximation should produce time-independent errors,
integration region, allowing evolution to late times. compounding over time to produce monotonic errors in the

The magnitude of the conformal strain in Fig. 4 is res_obsgervable strain. This fe_ature can be_seen ir_1 the figures: the
caled to the observable strain by £8.28. We can compare strain does not be_have like a wav@his fact IS also con-
with an example of expected straier—102 [9] for R f!rmedI for more wide ranr?e—covelr(_ad calculatlonf, u;f) to 10
~100 Mpc by convering our  units: e=3 times longer inx™ range) This result is good news for future
%10 2%6/(R/100 M This | I ht lidate th applications of.the qua5|spher|c_al approximation, because the

el( pc). This is small enough to validate the ;.4 ced spurious wave form is quite different from a nor-

mal gravitational wave. We also shogvanda dependencies
of ¢, in Fig. 5.

IAccording to the quasinormal mode analysis of the Kerr black Our final, most conservative check of the quasispherical
hole[18], the dominant frequenci¢fundamental mode correspond- approximation is to compare the specific enefgyn with
ing to |=2) of quasinormal mode for a 10l black hole is be- the expected specific energy of gravitational waves from an
tween 1.2 kHz(for a=0) and 1.8 kHz(for close to maximally inspiralling black-hole binary. The Kerr black-hole space-
rotating. time seems to be a good example for comparing with the
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energy flux of the spurious gravitational radiation produced
from this approximation, and showed th@ it converges
quickly due to our conformal variablegh) it does not be-
have as wavelike oscillations, arid) the total radiated en-

Log (E/m)

- -4 ergy is at least an order of magnitude less than the gravita-
tional radiation emission estimated from coalescing binary
*T o -5 black holes, according to the close-limit approximatjon
/./‘\ We remark that the close-limit approximation is the only
7 ¢ L1 i - .6 current result which predicts the total amount of radiation
0/ e from inspiralling binary black holes. Numerical results for
77 .7 head-on collisions with appreciable relative momentum also

give similar estimate§8].

These results suggest that the spurious radiation does not
003" " a/m fatally affect the gravitational wave form estimation. It might
not affect the wave form estimation at all, and we might

FIG. 6. Logarithmic plot of specific enerdy/m due to spurious  extract its effect to the total energy by subtracting the amount
radiation, as a function oh/m andr,/m. Energy is measured at we showed in Fig. 6. These facts directly encourage the ro-
x"=30, and the plotted range is;/me[3.04.9 and a/m  pystness of the quasispherical approximation. Therefore we
€[0.1,0.7. are interested in applying this scheme to more general situ-
ations, and/or implementing it as an output routine for full
numerical simulation codes of binary black holes or compact
stars, such as those using the standatdl3decomposition
é’f spacetime. These efforts will be reported elsewhere.

Recently, one of the authors extended the quasispherical

result of the close-limit approad®]. In Fig. 6, we plotted

the specific energi/m due to spurious radiation, as a func-

tion of a/m andry/m. We applied the same grid points and

other parameters in numerics with previous figures, an

evaluatedE/m at x* =30. For highera and largerr, cases, o ) . .

we could not fill plots in Fig. 6. This is because v?/e kept the@PProximation to mclud(_e nonlinear terms_m the shéaﬁﬂ._

resolutions and the same tolerance for the consistency cotfYe Nave also tested this second approximation numerically

vergence criteria for all cases, and these criteria failed fol'SiNd the same model and method. We find that the differ-

highera and larger . If we increase the resolutions and/or €Nc€ between the two levels of approximation is numerically

adjust the convergence criteria, then we can fill in thesdndistinguishable, e.g., the specific energy shown in Fig. 6 is

missing points also. identical to three digits. Thus the application also passes the
Consequently, we observe that the specific endtgy reliability test provided by a comparison of first and second

increases witta/m and decreases with,/m, as expected. If ~approximations.

we compare the amplitude d&&/m with Fig. 1 of Khanna

et al.[9], then we find that our values are at least an order of
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V. CONCLUDING REMARKS
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