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Quasispherical approximation for rotating black holes
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We numerically implement a quasispherical approximation scheme for computing gravitational waveforms
for coalescing black holes, testing it against angular momentum by applying it to Kerr black holes. As error
measures, we take the conformal strain and specific energy due to spurious gravitational radiation. The strain
is found to be monotonic rather than wavelike. The specific energy is found to be at least an order of magnitude
smaller than the 1% level expected from typical black-hole collisions, for angular momentum up to at least
70% of the maximum, for an initial surface as close asr 53m.
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I. INTRODUCTION

A quasispherical approximation scheme in a 212 decom-
position of space-time has recently been introduced@1#. This
proposal is with the aim of providing a computationally i
expensive estimate of the gravitational waveforms produ
by a black-hole or neutron-star collision, given a full nume
cal simulation up to~or close to! coalescence, or an analyt
cal model thereof.

The scheme truncates the Einstein equations by remo
second-order terms which would vanish in a spherica
symmetric space-time, see Bishopet al. @2#. Thus when the
linearized fields vanish, spherical symmetry is recovered
full. Unlike previous work on null-temporal formulation
@2,3#, a dual-null formulation is adopted here, i.e., a deco
position of the space-time by two intersecting foliations
null hypersurfaces. The technical advantages of the sch
include that only ordinary differential equations need
solved, and that the dual-null formulation is adapted to
diation extraction. The advantages of applicability inclu
that no prescribed background is required and that arbitra
rapid dynamical processes~close to spherical symmetry! are
allowed. The pressing question concerns how well
scheme handles deviations from spherical symmetry.
principal such deviation in the context of coalescing bla
holes is expected to be due to angular momentum. The
mary test case is therefore Kerr black holes, the unique
tionary vacuum black holes.

This article reports a numerical implementation of t
quasispherical approximation and its application to K
black holes, taking Boyer-Lindquist quasispheres. Since K
spacetime is stationary and contains no gravitational ra
tion, what we will evaluate in this article is the spuriou
gravitational radiation produced by the approximation. T
situation is quite different from adding perturbations@4# or
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strong waves@5# around the black hole as in other studie
We consider two measures of the error introduced by
approximation. First, the practical measure is the wave fo
of the spurious strain, as compared to signals expected t
measured by interferometers. Secondly, we measure the
cific energy, i.e., the ratio of the radiated energyE to the
original massm; this is a conservative measure, as it involv
summing the errors over all angles of the sphere, wher
observation is restricted to a particular angle.

In principle these quantities depend on only the spin
rametera/m, the relative initial radiusr 0 /m and, in the case
of the strain, the angle. For the approximation to be use
the error should be significantly less than the values expe
for a realistic black-hole collision. Typical values for the sp
cific energy obtained from numerical simulations@6# or from
the close-limit approximation@7# have increased from earl
estimates to around 1% if the initial relative momentum@8#
or angular momentum@9# is appreciable. The theoretica
limit on how badly an approximation might perform is muc
higher: 29% of the mass of a maximally rotating Kerr bla
hole may be extracted by the Penrose process@10#.

The article is organized as follows. Section II describ
the dual-null formalism, the quasispherical approximati
and the observables, strain and energy. Section III descr
our model and numerical integration procedures. The
merical results are shown in Sec. IV and we summarize
article in Sec. V.

II. FORMULATION AND APPROXIMATION

A. Dual-null formulation

The quasispherical approximation@1# is based on a dual
null formulation@11# of Einstein gravity@12#, summarized as
follows. One takes two intersecting families of null hype
surfaces labeled byx6. Then the normal 1-formsn65
2dx6 satisfy

g21~n6,n6!50, ~2.1!

whereg is the space-time metric. The relative normalizati
of the null normals may be encoded in a functionf defined
by
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ef52g21~n1,n2!. ~2.2!

Then the induced metric on the transverse surfaces, the
tial surfaces of intersection, is found to be

h5g12e2 fn1
^ n2, ~2.3!

where^ denotes the symmetric tensor product. The cov
ant derivative ofh is denoted byD. The dynamics is de-
scribed by Lie transport along two commuting evolution ve
tors u6 :

@u1 ,u2#50. ~2.4!

Specifically, the evolution derivatives, to be discretized in
numerical code, are

D65'Lu6
, ~2.5!

where' indicates projection byh and L denotes the Lie
derivative. There are two shift vectors

s65'u6 . ~2.6!

In a coordinate basis (u1 ,u2 ;ei) such thatu65]/]x6,
where ei5]/]xi is a basis for the transverse surfaces,
metric takes the form

g5hi j ~dxi1s1
i dx11s2

i dx2! ^ ~dxj1s1
j dx11s2

j dx2!

22e2 fdx1
^ dx2. ~2.7!

Then (h, f ,s6) are configuration fields and the independe
momentum fields are found to be linear combinations of

u65* L6* 1, ~2.8!

s65'L6h2u6h, ~2.9!

n65L6 f , ~2.10!

v5 1
2 efh~@ l 2 ,l 1# !, ~2.11!

where an asterisk is the Hodge operator ofh andL6 is short-
hand for the Lie derivative along the null normal vectors

l 65u62s65e2 fg21~n7!. ~2.12!

Then the functionsu6 are the expansions, the traceless
linear formss6 are the shears, the 1-formv is the twist,
measuring the lack of integrability of the normal space, a
the functionsn6 are the inaffinities, measuring the failure
the null normals to be affine. The fields (u6 ,s6 ,n6 ,v)
encode the extrinsic curvature of the dual-null foliatio
These extrinsic fields are unique up to duality6°7 and
diffeomorphisms which relabel the null hypersurfaces, i
dx6°el6dx6 for functionsl6(x6).

It is also useful to decomposeh into a conformal factorV
and a conformal metrick by

h5V22k, ~2.13!

such that
04400
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D6*̂ 150, ~2.14!

where *̂ is the Hodge operator ofk, satisfying *15 *̂ V22.
Taking quasi-spherical coordinatesxi5(u,f) such that *ˆ 1
5sinudu`df, V21 is the quasi-spherical radius. In an a
ymptotically flat space-time, it becomes convenient to u
the conformally rescaled expansions and shears

q65V21u6 , ~2.15!

§65Vs6 , ~2.16!

since they are finite and generally nonzero at null infinityI7.

B. Quasispherical approximation

Of the dynamical fields and operators introduced abo
(s6 ,s6 ,v,D) vanish in spherical symmetry, while
(h, f ,u6 ,n6 ,D6) generally do not. The quasispherical a
proximation consists of linearizing in (s6 ,s6 ,v,D), i.e.,
setting to zero any second-order terms in these quanti
This yields a greatly simplified truncation@1# of the full field
equations, the first-order dual-null form of the vacuum E
stein system@12#. In particular, the truncated equations d
couple into a three-level hierarchy, the last level being irr
evant to determining the gravitational wave forms. T
remaining equations are the quasispherical equations

D6V52 1
2 V2q6 , ~2.17!

D6 f 5n6 , ~2.18!

D6q652n6q6 , ~2.19!

D6q752V~ 1
2 q1q21e2 f !, ~2.20!

D6n752V2~ 1
2 q1q21e2 f ! ~2.21!

and the linearized equations

D6k5V§6 , ~2.22!

D6§75V~§1•k21
•§22 1

2 q7§6!. ~2.23!

These are all ordinary differential equations; no transversD
derivatives occur. Thus we have an effectively tw
dimensional system to be integrated independently at e
angle of the sphere.

The initial-data formulation is based on a spatial surfacS
orthogonal tol 6 and the null hypersurfacesS6 generated
from S by l 6 , assumed future pointing. The initial data fo
the above equations are (V, f ,k,q6) on S and (§6 ,n6) on
S6 . We will take l 1 and l 2 to be outgoing and ingoing
respectively.

C. Strain

The variables are directly related to physically measura
quantities. In particular,
2-2
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QUASISPHERICAL APPROXIMATION FOR ROTATING . . . PHYSICAL REVIEW D64 044002
e5
1

2Eg
k̇dt ~2.24!

is the transverse strain tensor measured along a worldling

normal to the transverse surfaces, wherek̇5'Llk in terms
of a vectorl5]/]t tangent tog. For a detector at large
distance, one may apply the linearized approximation, wh
2e reduces to the transverse traceless metric perturbatio
a linearized plane gravitational wave. In a weak gravitatio
field, one may use Newtonian physics, wheree reduces to
the Newtonian strain tensor. Thus the displacements to
measured by an interferometer are

d l

l
5e~e,e!, ~2.25!

where the unit vectore is the direction of displacement.
Writing l5a1l 11a2l 2 yields

e5
1

2Eg
V~a1§11a2§2!dt. ~2.26!

Since the strain vanishes at future null infinityI1, it is con-
venient to use the conformal strain tensor

«5
1

2E §2dx2, ~2.27!

where the integral is at constantx1. We will denote its plus
and cross components by«15«uu and«35«uf . In order to
compare with observational results, one converts back to
strain:

e5
«

R
, ~2.28!

whereR is the distance between the source and the dete

D. Energy

We define the energy fluxf of the gravitational waves, o
more conveniently, the conformal energy fluxw5V22f, as
the 1-formw5w1dx11w2dx2, where

w652
efq7kabkcd§6ac§6bd

64p
. ~2.29!

These expressions have the same form as those for the
formal Bondi flux atI7 @1#, but we propose using them
locally. Thenf2 is the outgoing flux andf1 is the ingoing
flux. The corresponding energyE of the gravitational waves
is then given by

D6E5 R *̂ w6 ~2.30!

with the initial conditionEuS50. Thus the Bondi energy a
I1 is E1E0, whereE0 is the Bondi energy at the interse
tion with S1 , which in the Kerr case will be just the
Arnowitt-Deser-Misner~ADM ! massm. We propose using
04400
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the specific energyE/m atI1 as a measure of the strength
a black-hole collision, following various references@6–9#.
This is the fraction of the original mass energy which h
radiated away.

III. MODEL AND NUMERICAL PROCEDURES

A. Model: Kerr black hole

As our model, we take a Kerr black-hole geometry

ds252
D

S
@dt2a sin2 udf#21

sin2 u

S
@~r 21a2!df2adt#2

1
S

D
dr21Sdu2, ~3.1!

where

D5r 222mr1a2, ~3.2!

S5r 21a2 cos2 u, ~3.3!

andm is the mass andam the angular momentum. The ho
rizon radius is denoted byr H5m1Am22a2. We take the
quasispherical approximation adapted to these~Boyer-
Lindquist! coordinates, i.e., the initial surfaceS is of constant
r 5r 0 and constantt, as depicted in Fig. 1. The inaccuracy
the quasispherical approximation as measured byE/m then
depends in principle only ona/m andr 0 /m. We expectE/m
to be monotonically increasing ina/m, from zero ata50 to
a maximum ata5m, since angular momentum is the cau
of the asphericity. Similarly,E/m is expected to be mono
tonically decreasing inr 0 /m, to zero at infinity, since the
approximation should be better at large distances.

FIG. 1. The region of numerical integration is shown as t
shaded region in the picture. Initial data is prescribed on a spa
surfaceS of constant Boyer-Lindquistr 5r 0 and t, and the null
hypersurfacesS6 generated from it. OnS2 (S1), the x2 (x1)
coordinate is set so as to cover the regionlr H<r<r 0 (r 0<r
<nrH), where 1,l'1 andn@1 are constants to be set by han
2-3
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B. Initial data

An explicit dual-null form of the Kerr metric is not known
except on the symmetry axis@13# or in the Schwarzschild
case, as the Kruskal form. Although there is an effort for t
direction @14#, we did not find explicit double-null coordi
nates which are well behaved at the outer horizons and
finity, despite trying changes in angular coordinate a
Kruskal-type rescalings@15#. However, we can construct th
initial data analytically as functions of (r ,u), then convert to
the required functions of (x6,u), as follows. We remark tha
our initial surfaces areS6 , and the following method ap
plies outside the horizons.

The null normal vectors are initially given by

l 6uS6
5S S

2~D2a2 sin2 u! D
1/2

] t6S D

2S D 1/2

] r , ~3.4!

where the normalization is such that

f uS50. ~3.5!

The apparent degeneracy atD5a2 sin2 u is just the boundary
of the ergoregion where] t becomes spatial; the dual-nu
coordinates extend through. We also fix

n6uS6
50, ~3.6!

which means thatx6uS6
are affine parameters. This implie

f uS6
50, fixing l 7uS6

and therefore locally determining th
dual-null foliation.

The quasi-spherical conformal factor is

V5@~r 21a2!22Da2 sin2 u#21/4 ~3.7!

which is real and positive. Then we obtain the conform
metric

k5V2Sdu21
sin2 u

V2S
df2, ~3.8!

and the conformally rescaled expansions and shears

q6uS56A D

2S
V3U, ~3.9!

§6uS6
56A D

2S
V5Va2 sin2 uS du22

sin2 u

V4S2 df2D ,

~3.10!

where

U522V25] rV52r ~r 21a2!2~r 2m!a2 sin2 u,
~3.11!
04400
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V5
V26] r~V2S!

a2 sin2 u
5r 313mr21a2~r 2m!cos2 u.

~3.12!

To complete the initial data construction, we need
know the initial data onS6 as functions of (x6,u). So we
need to knowr uS6

as functions of (x6,u). This is deter-
mined by the equations

D6r uS6
56S D

2S D 1/2

, ~3.13!

giving

x6uS6
56E

r 0

r S 2S

D D 1/2

dr8, ~3.14!

where the integral is along a curve of constant (u,f). Note
that theD factor means that we takeS outside the horizons
r 5r H , which anyway is the region of interest. We nume
cally integrated Eq.~3.14! using a fourth order Runge-Kutt
method~Fehlberg method!, then inverted. This was checke
against the analytic solution in the equatorial planeu5p/2:

x6uS6
56A2@AD1m ln~r 2m1AD!#7c. ~3.15!

As m is an overall scale, we fixed it to unity.

C. Evolution procedures

Here we describe our numerical procedures. We have a
of ordinary differential equations in two variables. A
pointed out by Gundlach and Pullin@16#, free evolution
schemes in such a system may lead to unstable evolu
This fact was also seen in our experience, and we develo
a kind of predictor-corrector scheme similar to that of H
madéand Stewart@17#.

The actual steps we took are the following. The set
variables isu[(V, f ,q6 ,n6 ,kab ,§6 ab). Let us schemati-
cally express a setu at a pointx25k on a sliceS2(x1

5n) asuk
n . The datauk

n11 is determined from bothuk21
n11 and

uk
n as in Fig. 2. Suppose we have already all the data atuk21

n11

anduk
n .

~1! First, we evolve along thex1-direction, say fromuk
n to

uk
n11 . We have a set of equations fo

(V, f ,q6 ,n2 ,kab ,§2 ab),

FIG. 2. The dual-null integration scheme. In order to obtain
data at griduk

n11 , we need bothuk
n anduk21

n11 .
2-4
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D1V52 1
2 V2q1 , ~3.16!

D1 f 5n1 , ~3.17!

D1q152n1q1 , ~3.18!

D1q252V~ 1
2 q1q21e2 f !, ~3.19!

D1n252V2~ 1
2 q1q21e2 f !, ~3.20!

D1kab5V§1 ab , ~3.21!

D1§2 ab5V~§1 ack
cd§2 db2 1

2 q2§1 ab!. ~3.22!

The step is integrated using the Fehlberg method. Note
we do not have equations for evolvingn1 and§1 , therefore
we have to interpolate them using (n1 ,§1 ab)k

n and
(n1 ,§1 ab)k

n11 . The latter was linearly extrapolated for th
first iteration, but will be updated after an integration alo
the x2-direction ~next step! has been done.

~2! Secondly, we evolve along thex2-direction, from
uk21

n11 to uk
n11 . We have a set of equations for (n1 ,§1 ab),

D2n152V2~ 1
2 q1q21e2 f !, ~3.23!

D2§1 ab5V~§1 ack
cd§2 db2 1

2 q1§2 ab!, ~3.24!

for completing the setu, but we also evolveq6 ,V andf by

D2V52 1
2 V2q2 , ~3.25!

D2 f 5n2 , ~3.26!

D2q252n2q2 , ~3.27!

D2q152V~ 1
2 q1q21e2 f !. ~3.28!

Here again we have to interpolate§2 andn2 in integrating
the above, and we use a cubic spline interpolation us
(n2 ,§2 ab)ki

n11 (1<ki<k), where the data (n2 ,§2 ab)k
n11

was given in the previous step~1!.
~3! We check the consistencies of the evolution, by mo

toring the differences of (kab ,q6 ,V, f )k
n from the above

steps~1! and ~2!. If they are all within a tolerance, then w
finish this evolution step by updating (n1 ,§1 ab ,q6 ,V, f )
as a value atuk

n11 . If not, we repeat back to the step~1!.
We construct a numerical grid inx6 space with constan

spacing in each direction. The iteration procedures are c
pleted a couple of times at each grid point. The results sho
in this article are obtained by setting the tolerance in
above step~3! to 1025. The code was tested for th
Schwarzschild case, for which the analytic expression
dual-null coordinates is known; the calculated expansionq6

differed from the exact expression to within 1026.
In the next section, we present our evolutions of a K

black-hole space-time under this quasispherical approxi
tion. We chose the initial null sliceS2 so as to cover the
region 1.25r H,r ,r 0. We stopped the evolution atx1530,
which corresponds tor being 25;30m, depending on the
04400
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values ofr 0 anda. We took 51 grid points in thex2 direction
and 11 grid points inu5@0,p/2#, and evolved with grid
separationDx150.5Dx2.

IV. NUMERICAL RESULTS

Recall that our principal measures of the gravitational
diation are the conformal strain« ~2.27! and the specific
energyE/m ~2.30!. Since we are using conformal variable
we expect that we can evolve towards the asymptotically
region without long-term evolution in thex1 direction. In
Fig. 3, we plotted the specific energyE/m at the boundaries
of the integration region. We integrated theD1E equation of
~2.30! along the hypersurfaceS1 (x250), settingE50 on
S(x15x250), then integratedE using theD2E equation at
each constantx1. We plottedE as a function ofx2 at a
constantx1 surface in Fig. 3~a!. We see thatE is converging
to a line~the solid line in the figure!, and not diverging even
close to the black hole~at largerx2). Figure 3~b! plots E at

FIG. 3. Specific energyE/m for a/m50.1. ~a! E/m is plotted as
a function of the ingoing null coordinatex2 for each constant out-
going null coordinatex150.0,3.0, . . . ,30.0. We setr 054.0 for this
plot. ~b! The integratedE/m over the ingoing null coordinatex2 is
shown as a function of the outgoing null coordinatex1. We show
both r 053.0 and 4.0 cases. We see that the specific energy
verges to a particular positive value in thex1 direction, as expected
2-5
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the final value ofx2 as a function ofx1. We see from the
figure that the energy measured for increasingx1 converges
at some value, as expected.

For the same set of parameters, we also plot the evolu
behavior of the conformal strain in Figs. 4 and 5. The cr
component,«35«uf , is zero in this model, so only the plu
component«15«uu is needed. The conformal strain is ca
culated from Eq.~2.27! as a function ofx2 at constantx1 by
setting«150 atx250. We again observe that«1 converges
to particular lines~the solid lines! as x1 increases, again
reflecting the conformal variables. The line ofx1530.0 in
Fig. 4, therefore, is close to the wave form for observ
infinitely far from the source.

Note that the horizontal axis in Fig. 4 isx2 coordinate,
and this is related toDx2'A2Dt at large distance, see Eq
~3.15!. Then the unit lengthDx2 for observers at large dis
tance is about 5 (m/M ()m sec, translated from our unitsc
5G51. Our plots in this article, therefore, cover a qu
short time period compared with the typical millisecond tim
scale of gravitational waves from a Kerr black hole.1 To
obtain longer time scales we would have to integrate clo
to the horizon, which causes numerical difficulties due to
infinite redshift.~This difficulty can be overcome using mor
computational resources, but becomes rather expens!
However, for a dynamically evolving black hole, the eve
horizon has finite redshift and so could lie in the numeri
integration region, allowing evolution to late times.

The magnitude of the conformal strain in Fig. 4 is re
caled to the observable strain by Eq.~2.28!. We can compare
with an example of expected straine;10220 @9# for R
5100 Mpc by converting our units: e53
310227«/(R/100 Mpc). This is small enough to validate th

1According to the quasinormal mode analysis of the Kerr bla
hole@18#, the dominant frequencies~fundamental mode correspond
ing to l 52) of quasinormal mode for a 10M ( black hole is be-
tween 1.2 kHz~for a50) and 1.8 kHz~for close to maximally
rotating!.

FIG. 4. Conformal strain«1 for a/m50.1 andr 054.0. The plot
is for the equatorial planeu5p/2, showing the convergence o
these lines in thex1 direction. Lines are ofx153.0,6.0,9.0, . . . ,
and 30.0. We remark that these lines are not wavelike.
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quasispherical approximation. The converged conform
strain (x1530 lines in Fig. 4! is increasing as the ingoing
coordinatex2 approaches the black hole horizon. Howev
if we extrapolate this magnitude to the horizon~which will
be reached aroundx2;6.0 for this choice of parameter!, it is
still many orders of magnitude less than expected values

Since Kerr spacetime is stationary, and its deviation fr
Schwarzschild spacetime is also stationary, a quasisphe
approximation should produce time-independent erro
compounding over time to produce monotonic errors in
observable strain. This feature can be seen in the figures
strain does not behave like a wave.~This fact is also con-
firmed for more wide range-covered calculation, up to
times longer inx2 range.! This result is good news for future
applications of the quasispherical approximation, because
produced spurious wave form is quite different from a n
mal gravitational wave. We also showu anda dependencies
of «1 in Fig. 5.

Our final, most conservative check of the quasispher
approximation is to compare the specific energyE/m with
the expected specific energy of gravitational waves from
inspiralling black-hole binary. The Kerr black-hole spac
time seems to be a good example for comparing with

k

FIG. 5. Conformal strain«1 for the same parameters as Fig.
~a! «1 at x1530.0 for differentu. We see that the maximal strai
occurs in the equatorial plane,u5p/2, as expected.~b! The depen-
dence of«1 on a/m. The lines are for the data atx1530.0 for u
5p/2. Both solid lines are equivalent with the solid line in Fig.
2-6
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result of the close-limit approach@9#. In Fig. 6, we plotted
the specific energyE/m due to spurious radiation, as a fun
tion of a/m and r 0 /m. We applied the same grid points an
other parameters in numerics with previous figures, a
evaluatedE/m at x1530. For highera and largerr 0 cases,
we could not fill plots in Fig. 6. This is because we kept t
resolutions and the same tolerance for the consistency
vergence criteria for all cases, and these criteria failed
highera and largerr 0. If we increase the resolutions and/
adjust the convergence criteria, then we can fill in the
missing points also.

Consequently, we observe that the specific energyE/m
increases witha/m and decreases withr 0 /m, as expected. If
we compare the amplitude ofE/m with Fig. 1 of Khanna
et al. @9#, then we find that our values are at least an orde
magnitude smaller than the results of the close-limit appro
mation, up to the range where different versions of the la
diverge. The fact that the spurious radiation produced in
quasispherical approximation is quite small indicates the
bustness of this approximation to the general situations.

V. CONCLUDING REMARKS

We tested the quasispherical approximation by applyin
to Kerr black holes. We numerically calculated the strain a

FIG. 6. Logarithmic plot of specific energyE/m due to spurious
radiation, as a function ofa/m and r 0 /m. Energy is measured a
x1530, and the plotted range isr 0 /mP@3.0,4.5# and a/m
P@0.1,0.7#.
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energy flux of the spurious gravitational radiation produc
from this approximation, and showed that~a! it converges
quickly due to our conformal variables,~b! it does not be-
have as wavelike oscillations, and~c! the total radiated en-
ergy is at least an order of magnitude less than the grav
tional radiation emission estimated from coalescing bin
black holes, according to the close-limit approximation@9#.
We remark that the close-limit approximation is the on
current result which predicts the total amount of radiati
from inspiralling binary black holes. Numerical results f
head-on collisions with appreciable relative momentum a
give similar estimates@8#.

These results suggest that the spurious radiation does
fatally affect the gravitational wave form estimation. It mig
not affect the wave form estimation at all, and we mig
extract its effect to the total energy by subtracting the amo
we showed in Fig. 6. These facts directly encourage the
bustness of the quasispherical approximation. Therefore
are interested in applying this scheme to more general s
ations, and/or implementing it as an output routine for f
numerical simulation codes of binary black holes or comp
stars, such as those using the standard 311 decomposition
of spacetime. These efforts will be reported elsewhere.

Recently, one of the authors extended the quasisphe
approximation to include nonlinear terms in the shears@19#.
We have also tested this second approximation numeric
using the same model and method. We find that the dif
ence between the two levels of approximation is numerica
indistinguishable, e.g., the specific energy shown in Fig. 6
identical to three digits. Thus the application also passes
reliability test provided by a comparison of first and seco
approximations.
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