Adjusted ADM systems and their expected stability properties
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e systematical understanding how to construct an evolution system which is robust against
violation of errors

e idea of “adjusted system”, adding constraints in RHS, why they work?

e (adjuted) constraint propagation equations and their eigenvalue analysis
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1 Background of the problem

Numerical Relativity

— Necessary for unveiling the nature of strong gravity

— Gravitational Wave from colliding Black Holes, Neutron Stars, Supernovae, .

— Relativistic Phenomena like Cosmology, Active Galactic Nuclei, .

— Mathematical feedbacks to Singularity, Exact Solutions, Chaotic behavior, .

— Labratory of Gravitational theories, Higher dimensional models, .

Best Einstein formulation for long-term stable and accurate simulation?

Many (too many) trials and errors, not yet a systematical understanding

strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM

strategy 2 Apply a formulation which reveals a hyperbolicity explicitly

strategy 3 Formulate a system which is “asymptotically constrained” against a violation of constraints

— Why?

The direct use of the standard ADM equations is not recommended.
By adding constraints in RHS, we can kill error growing modes




strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM
define new variables @Kw&.wﬂm@%?v. instead of the ADM's (;;,K;;) where

Jij = e vy, A= V(K — (13),K), =T

use momentum constraint in ["-eq., and impose det¥;; = 1 during the evolutions.

No explicit explanations why this formulation works better.

Potsdam group (2000): the replacement by momentum constraint is essential.

strategy 2 Apply a formulation which reveals a hyperbolicity explicitly.

For a first order partial differential equations on a vector w,

Uy Uy Uy
O | up | = A O, | us | + B | us
)

if the eigenvalues of A are

weakly hyperbolic all real.

strongly hyperbolic  all real and 3 a complete set of eigenvalues.

symmetric hyperbolic if A is real and symmetric (Hermitian).



strategy 2 Apply a formulation which reveals a hyperbolicity explicitly. (cont.)

weakly hyperbolic > strongly hyperbolic > symmetric hyperbolic systems,

Are they actually helpful? Which level of hyperbolicity is necessary?
Using Ashtekar’s variables between we found that [HS-Yoneda, CQG17(2000)4799]

(1) the three levels of hyperbolicity can be obtained by adding constraint terms and/or im-
posing gauge conditions

(2) there is no drastic difference in the accuracy of numerical evolutions in these three levels
(comparison of nonlinear wave propagation in a plane symmetric spacetime)

(3) the symmetric hyperbolic system is not always the best for reducing numerical errors

Note that IBVP (Initial Boundary Value problem) requires “symmetric hyperbolicity” to be
treated with.



strategy 3 Formulate a system which is “asymptotically constrained” against a violation of constraints
“Asymptotically Constrained System”— Constraint Surface as an Attractor

method 1: A-system (Brodbeck et al, 2000)

— Add aritificial force to reduce the violation of con-
straints

— To be guaranteed if we apply the idea to a sym-

metric hyperbolic system.
w method 2: Adjusted system (Yoneda HS, 2000, 2001)

T 0 — We can control the violation of constraints by ad-
[\ = . . .
justing constraints to EoM.

— Eigenvalue analysis of constraint propagation

Constrained / Surface equations may prodict the violation of error.

(satisfies /Einstein's constraints)
— This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM formulation, too!!




2 Idea of “Adjusted system” and Our Conjecture
General Procedure
1. prepare a set of evolution egs. o’ = f(u®, Opus, - -)
2. add constraints in RHS o’ = f(u®, Oy, )+ F(C* 9,C" - -+)

3. choose appropriate F(C* 9,C%, ")
to make the system stable evolution

How to specify F'(C* 9,C",---) ?
4. prepare constraint propagation eqs. 0,C* = g(C*, 0,C*, - +)

5. and its adjusted version o C" = g(C*, 0C",--+) + G(C, 9,C°, - - +)

A A

6. Fourier transform and evaluate eigenvalues 8,C*% = A(C*) C*

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more
stable.




3 Adjusted ADM systems

We adjust the standard ADM system using constraints as:

Oyij = —2akK;;+ V0 + V[, (1
+PH + Q" My + 1" (ViH) + ¢ (ViM,), (2
O K = aRY +aKK; — 20K K" — V, V0 + (Vi) Ky + (V85 Ki + 8V K5 (3
nTin + %w@.\/\? + ﬁw@.Aq\ﬂ\Iv + mi@.Aq\?\/\tvu &

N— N N

with constraint equations

H = R® 4+ K? - K;;K", (5)
.>\~@. = QNNAQ.@. — QNNW Amv

We can write the adjusted constraint propagation equations as

OH. — (orginal terms) + HY"(2] + HY™0(2) + HY™00,(2)] + HY[(4), (7
OyM; = (original terms) + My;""[(2)] + Mo/ 0,[(2)] + Ms;""[(4)] + My4”™"0;[(4)]. (8)



The constraint propagation equations of the original ADM equation:
e Expression using H and M, (1)

OH = B(O/H) + 2aKH — 20" (9;M;) + a(Oryims) 27™ 4" — v YM; — 447 (0;0) M,
OM; = —(1/2)a(0/H) — (9;0)H + 37 (0;M;) + a K M; — B+ 0y ) M + (08 )7 M.

e Expression using H and M, (2)

OH = BOH +20KH — 20y~ 20,(/AM) — 4(01) M
= BV/H 4 2aKH — 2a(ViMY) — 4(V,a) M,
OM; = —(1/2)a(0/H) — (Oia)H + B'VIM; + aKM; + (V,;5) M’
= —(1/2(ViH) = (Via)H + B'VIM; + aKM; + (V) M,

e Expression using H and M; (3): by using Lie derivatives along an,
%Q::\I = +2aK'H — MQQ\lH\wQA/\M.\SJ - %AQQV.\/\NN“
a%@:t.\s& = |Q\MVQA®&\\|D - A@Qvi + QNA‘.\/\F
e Expression using 7y;; and /;;

OM = Hy"™(OYmn) + Hy™" 0:(0ymn) + H3™" 0,050 o) + H™ (0K )
OM; = M (Oymn) + M7 0;(Oryimn) + M3 (0: K ) + Mai?™" 0;( 0 K ),



where

mn
mH
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mm Jimn
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Y770 ) O vp) — 7Y™ (O™ (D) — 2K K™ 4+ 2K K™,
=2y = (3/2)77(0y™") + 4™ (07™) + ™1,

|Q\SQ\§3 + Q\@:Q\Sﬁ

YU (OK™)) = "™ (0K + (1/2) (0™ K + T"E™,

—yM K"+ (1/2)y™ K7 + (1/2) K™,

T (1/2)(07™),

Q\SQ%@@ o Q\Sz%%v

where we expressed [ = [~

L)



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint C,, := (H, M;)" using vector harmonics.
C =3 (A"(t,r)aim(8, ) + B by + C"" i + D" di ) (1)
[,m

where we choose the basis of the vector harmonics as

Yin 0 0 0

Q& — O @N — 53@ ON — Q\. O &N _ \\. O
" 0 o 0 P NQ + C %mM\MS P NQ + C |mwwm®€5§
O O @ﬁxs mwﬁ % @%M\NS

The basis are normalized so that they satisfy
(Cn Gy = [ dep [T CEC, 1" sin 06,
where 1" is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore

Alm = AQMS C,), O9AM™= A@Mw@f@ﬁvv“ etc.

V)

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Al = M% \»Mﬁ (t)e™ etc. (2)
So that we will be able to obtain the RHS of the evolution equations for A\xm@v (t),- -, Umﬁgvﬂ

in a homogeneous form.



4.2 Constraint propagations in Schwarzschild spacetime

1.

the standard Schwarzschild coordinate

oM dr?
ds? = —(1— "y Y

. 1= 2M)r + r2dS), (the standard expression)

. the isotropic coordinate, which is given by, r = (1 + M /2r;.,)*7is0:

M
Ydt* 4+ (1 + —)Y[dr7,, + 1, d9Q%, (the isotropic expression)

150
wﬁ.mo

. the ingoing Eddington-Finkelstein (iEF) coordinate, by t;pp =t + 2M log(r — 2M ) :

2M AM 2M
ds®* = —(1 — = )dt:pp + —dtippdr + (1 + ——=)dr* + r*dQ)? (the iEF expression)
r r r

. the Painlevé-Gullstrand (PG) coordinates,

2M 2M
ds® = — ? — |v At + 2, ——dtpg dr + dr* + r*dQ* (the PG expression)
r r

which is given by tpg =t + V8Mr — 2M log{ (\/r/2M + 1)/(r/2M — 1)}



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kp = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two
eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Oyiy = —20kK;;+ VB + V;0,
@Nﬂ@. = Qmmwv +aKK;j — MQN&%N\@ — V,;V,a+ AQSQJN\& + Aqbﬁwvw\ﬁ + quxawﬂﬁ + krayiiH,



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)
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Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) k;, = +1/2, and (c) kK, = —1/2.

Oyyi; = (original terms) + P ’H.,
0, K;; = (original terms) + R;;H + m\&.a\iw -+ mﬁiﬂiﬁ?
where Pj; = IthwﬁS R;j = Rh@%@ﬂ@. - ﬁ\wvmm\«@.vn
mws - mho&wE@@Qv&v - @Qj&iif mi&. = thwEm&.v - C\wvﬁiﬁv



Example 3: standard ADM (in isotropic/iEF coord.)
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Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate

coordinate (1) and we plot lines on the ¢t = 0 slice for each expression. The solid four lines and the dotted four lines with circles

isotropic coordinate, no adjustments (standard ADM)

are real parts and imaginary parts, respectively.
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Example 4: Detweiler-type adjusted (in iEF /PG coord.)
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Figure 4: Similar comparison for Detweiler adjustments. xk;, = +1/2 for all plots.



No. | No. in | adjustment 1st? Sch/iso coords. iEF /PG coords.
Table.?? TRS i real. i imag. real. i imag.
0 0 - no adjustments yes — - - — —
P-1 2-P P;; —K thQ&. no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-2 3 P —KLO%Y4j no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-3 - P P, =—kor P, = —ka no no slightly enl.Neg. | not apparent slightly enl.Neg. not apparent
P-4 - P —KYij no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-5 - P —KYpr no no | red. Pos./enl.Neg. | not apparent | red.Pos./enl.Neg. | not apparent
Q-1 - Q% kaBFy; no no N/A N/A % ~ 1.35 min. vals. | not apparent
Q-2 - @w& Q" = no yes red. abs vals. not apparent red. abs vals. not apparent
Q-3 - @w&. Q"ij = ki or Qi = Kovysj no yes red. abs vals. not apparent enl.Neg. enl. vals.
Q-4 - @w&. Q" rr = KEYrr no yes red. abs vals. not apparent red. abs vals. not apparent
R-1 1 Ri;  kpavyij yes || yes kp = —1/4 min. abs vals. kp = —1/4 min. vals.
R-2 4 R;j R, = —kyaor Ry = —ky, yes no not apparent not apparent | red.Pos./enl.Neg. enl. vals.
R-3 - R;j Ry = —kvypr yes no enl. vals. not apparent | red.Pos./enl.Neg. enl. vals.
S-1 2-S Sk kpa? B@Q&&w — (Oa)yi Y™ | yes no not apparent not apparent not apparent not apparent
S-2 - m_w& rary® (Orvij) yes no makes 2 Neg. not apparent makes 2 Neg. not apparent
p-1 - @w@. p'ij = —Kavy;; no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - ﬁ»@. P’ = KQ no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - %w& P = KQYpp no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - QE& q"ij = Kayij no no | k= 1/2 min. vals. red. vals. not apparent enl. vals.
q-2 - @E& Q" = —RQYpr no yes red. abs vals. not apparent not apparent not apparent
r-1 - iﬂ& T’ = Karyg; no yes not apparent not apparent not apparent enl. vals.
r-2 - iﬂ& e = —RQ no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - iﬂ& e = —RKQYpp no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s sMii kpa® Em&.v — (1/3)7i;7™] no no makes 4 Neg. not apparent makes 4 Neg. not apparent
s-2 - .wis. s = —Kayij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - mi@. ST = —RQYpr no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.

Table 1: List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers. The
effects to amplification factors (when x > 0) are commented for each coordinate system and for real/imaginary parts of AFs,
respectively. The ‘N/A’ means that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does
not change the AFs effectively according to our conjecture; ‘enl./red./min.” means enlarge/reduce/minimize, and ‘Pos./Neg.’
means positive/negative, respectively. These judgements are made at the r ~ O(10M) region on their ¢t = 0 slice.



Example 5:

On Maximally-sliced hypersurfaces (standard ADM in Sch. coord.)

maximally sliced evolution, standard ADM
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Figure 5: Amplification factors of snapshots of maximally-sliced evolving Schwarzschild spacetime. Fig (al) and (a2) are of the
standard ADM formulation (real and imaginary parts, respectively), Lines in (al) are the largest (positive) AF on each time
slice, while lines in (a2) are the maximum imaginary part of AF on each time slice. The lines start at r,,;, = 2 (¢ = 0) and

Poin = 1.55 (£ = 5).




" Conclusion

Towards a stable and accurate formulation for numerical relativity

e Several reports say numerical stabilities depend on the formulations to
apply, although they are mathematically equivalent.

e status = chaotic, many trials and errors
We tried to understand the background systematically.

e Our proposal = “Evaluate eigenvalues of constraint propagation eqns”
We give satisfactory conditions for stable evolutions.

Fourier transformation allows to discuss lower-order terms.

e Our Observation = “Stability will change by adding constraints in RHS”
We named “Adjusted System”.
Numerically confirmed in Maxwell system and Ashtekar system.

e Our Observation 2= The idea works even for the ADM formulation
We explain the effective parameter range of Detweiler’s system (1987).

We proposed variety of adjustments, predicted their expected stability.

(A workshop on this subject will be held at Mexico, May 2002.)





