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e Introduction to Numerical Relativity

e Why mathematically equivalent eqs produce different numerical stability?

e Three approaches: (1) ADM/BSSN, (2) hyperbolic form. (3) attractor systems
e Proposals : A unified treatment as Adjusted Systems
Ref:

http://xxx.lanl.gov/abs/gr-qc/0209111
a review article, in print. (Nova Science Publ.)

at Minisymposium " Numerical Methods for PDEs with Constraints”
in The 5th International Congress on Industrial and Applied Mathematics, Sydney, 2003 July.



Plan of the talk Control Constraints: H. Shinkai

1.| Introduction: General Relativity and Numerical Relativity

2. Formulation problem of Numerical Relativity
(0) Arnowitt-Deser-Misner
(1) Baumgarte-Shapiro-Shibata-Nakamura formulation
(2) Hyperbolic formulations
(3) Attractor systems

3. “Adjusted Systems”
Asymptotically constrained system by adjusting evolution eqs.
based on Constraint Propagation analysis

4. Summary and Future Issues



The Einstein equation

r geodesics <—|

spacetime curvature ——» matter distribution

1
] | | . |
Einstein tensor Energy-Momentum tensor

’ cosmological constant

Solve for metric

Juv (t,x,y,z) V. V
(1®’c<’>m|’90nents) ds® = 2 Jwdatds” = gy do’dz

\
flat spacetime (Minkowskii spacetime): (9 gtf gty gtz
zxz Y9zy Yzz

ds? = —di? +da? + dy? + de? I = Iy Gy
= —dt® + dr® + r*(d6® + sin® fdy?) \ sym. 922 )




The Einstein equations (General Relativity): R, + %g,WR + Ag,, = 8nGT,
= Physics of strong gravity.

e gravitational waves from colliding black holes, neutron stars, supernovae, ...
e cosmology, higher-dimensional models, singularity, ...

e relativistic phenomena at active galactic nuclei, ...

What are the difficulties?
e for 10-component metric, highly nonlinear PDEs. (4 elliptic/6 hyperbolic in 3+1)

e free to choose cooordinates, gauge conditions, and even for decomposition of the
space-time (3+1 or 2+2 or whatever).

e has singularity in its nature.

Solve it using computers, anyway !

Numerical Relativity = Solve the Einstein equations numerically.
over 20 years history, but still looking for a recipe ...
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Numerical Relativity — open issues

0. How to foliate space-time
Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

= if the foliation is (3 + 1), then - --

1. How to prepare the initial data

Theoretical: Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Numerical: Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical: Free evolution or constrained evolution?
Proper formulation for the evolution equations? = THIS TALK!

Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction? Connection to other approximations?

Numerical: Identification of black hole horizons? Visualization of simulations?
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strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the spacetime. shift vector, Ni

Evolve 12 variables (v;;, K;;) surface normal line| : :
Ni dt coordinate constant line

with a choice of gauge condition/ ,
A" A'
A A S(t+dt) /

lapse fuinction, N —, N dt /

5 74 >

A
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
i — (3) 2 _ KU —
constraints d!v E = 47p R+ (trK)* — Kj; KY = 2rppg + 2/
div B =0 DjKJZ- — DZtI“K = /ﬁJJZ‘
Lo = rot B— 2T | Oy = —2NKy + DN + DN,
. ¢ ¢ | 0K;; = N(®R;; + ttKK;;) —2NKyK', — D;D;N
evolution egs. o - .
1 + (DJN )sz + (DZN )ij + N DmKij — N’}/Z]A
OB =—rot E — ke Sij + 371 (pir — t1S)}




Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

Blow up

error

time

Constrained / Surface
(satisfies /Einstein's constraints)




Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

Blow up Blow up

ADM

error

BSSN

|

time
Mathematically equivalent formulations, but differ in its stability!

strategy O:
strategy 1:
strategy 2:
strategy 3:

Arnowitt-Deser-Misner formulation

Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM
Apply a formulation which reveals a hyperbolicity explicitly

Formulate a system which is “asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?
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strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM

— define new variables (gb,%ijl”fz) instead of the ADM's (;;,K;;) where
Yij = 6_4¢%’j7 zzlz'j = 6_4¢(Kij — (1/3)i; K), [ = féﬂjk,
use momentum constraint in ["-eq., and impose det¥;; = 1 during the evolutions.
— The set of evolution equations become
(0, Lo = —(1/6)ak,
(00— Lp)7yy = —2aAy,
0y — Lo)K = aAj ;A7 4+ (1/3)aK? — 47 (V;V;a),
(0 — Ls)Ay = —e(V;V,a)"F + 6_4¢QR§?) — e a(1/3)7;R® + a(K Ay; — 2A4. A%))
O = —2(0;0)AY — (4/3)a(0; K)7" + 120 A7 (9;0) — 20A (0;7'F) — 2al™); A1 4"
=0, (B* 07" — A0k = A (Ou) + (2/3)77(015Y))

Ry = OIf — o}, + Tk, — T = Ry + Ry,
Rj; = =2D:iD;¢ — 2§;;D' Dig + 4(D;6)(D;0) — 45;;(D'o) (D)
Rij = —(1/2)3" 0mii; + Gra0nL" + DT + 26" T3 L jyem + glmIy, Drgj
— No explicit explanations why this formulation works better.
AEI group (2000): the replacement by momentum constraint is essential.




strategy 2 Apply a formulation which reveals a hyperbolicity explicitly.

For a first order partial differential equations on a vector w,

uy uy uy
at Uz | = A a;g U9 + B U9
characteristic part lower order part

i i A 4 )

if the eigenvalues of A are Weakly hyp.
weakly hyperbolic all real.

Strongly hyp.

strongly hyperbolic  all real and 3 a complete set of eigenvalues. [ metric hyp]
symmetric hyperbolic if A is real and symmetric (Hermitian). N )

Expectations
— Wellposed behaviour
symmetric hyperbolic system = WELL-POSED , ||u(t)| < e"|[u(0)]|

— Better boundary treatments <= d characteristic field.

— known numerical techniques in Newtonian hydrodynamics.
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strategy 3 Formulate a system which is “asymptotically constrained” against a violation of constraints

“Asymptotically Constrained System”— Constraint Surface as an Attractor

Constrained / Surface
(satisfies /Einstein's constraints)

Blow up

error

—_— Stabilize?

time

method 1: A-system (Brodbeck et al, 2000)

— Add aritificial force to reduce the violation of con-
straints

— To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.

method 2: Adjusted system (HS-Yoneda, 2000, 2001)

— We can control the violation of constraints by ad-
justing constraints to EoM.

— Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

— This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM/BSSN formulation, too!!




ldea of \-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system ou = Jou+ K

2. Introduce A as an indicator of violation of constraint 9\ = aC — 3\

which obeys dissipative eqgs. of motion (a#0,8>0)
: : u A 0 U
3. Take a set of (u, \) as dynamical variables 7] ()\) ~ (F O) 0; ()\)
4. Modify evolution egs so as to form P (u) B (A F) 9 (u)
a symmetric hyperbolic system “\N)\F 0) 7\

Remarks

e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]
e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]

for controlling the constraints or reality conditions or both.
e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]



|dea of “Adjusted system” and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. ou® = f(u®, dpu, - - -)

2. add constraints in RHS Brut = f(ul, s, ) +F(C", 9,0, - - )

3. choose appropriate F(C* 0,C%, - )
to make the system stable evolution

How to specify F'(C*, 0,C",---) ?
4. prepare constraint propagation egs. 0,C* = g(C*, 9,C*, - - )

5. and its adjusted version 0,C = g(C*, 9,C°, - - ) +G(C*,0,C°, -+ )

6. Fourier transform and evaluate eigenvalues §,C% = A(C?) C*

———

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have
a constrained surface an attractor.

Procedure: Add constraints to evolution eqs, and adjust its multipliers.
Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

We see more stable evolution, if CAFs have

o Constraint o |
O | = | Propagation 2 (A) n.eg?tive real-part (the constraints are forced to be
éN Matrix CN dImInIShed), or

_ (B) non-zero imaginary-part (the constraints are prop-
Eigenvalues = CAFs :
agating away).




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

&gEi = ceijkﬁjBk -+ PZ CE -+ Qz CB7 sym. hyp <~ PZ — Qz j Rz — Sz =0,
0,B; = —ce/*0.Ep+ R Cp+ S: Cp. strongly hyp < (P —S;)° +4R,Q; > 0,
oo~ 0. Oy op mp, WK YD & (P S+ ARQ >0

Constraint propagation equations
0,Cgp = (82P‘)CE + P&(a@CE) + (82Q&>CB + Qi(aiCB%
@CB = (6’LRZ>CE -+ RZ(&CE) + (@SZ)CB + 57(8103),
sym. hyp & Qi=R,
strongly hyp < (P — S;)? + 4R;Q; > 0,
weakly hyp < (P, —S;)* +4R:Q; >0
CAFs?
5 (OE) _ (@-Pé + Pk 0,Q +Q%) 9 (CE) N (P%ki Q?kz-) (CE> .7 (OE)
Cg O;R'+ R'k; 0;S"+ S'k; Cg R'k;, S'k; Cp ' Cg
= CAFs = (P'k; + S'k; £ \/(P'k; + S'k;)2 + A(Qk; Rik; — P'k;Sik;))/2

Therefore CAFs become negative-real when

Pk + Sk <0, and  QkREk;— PkS'k; <0
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3 Adjusted ADM systems

We adjust the standard ADM system using constraints as:

Oy = —2aKi;+ ViB; + Vb, (1)
+PyH A+ Q"M+ p* i (ViH) + ¢35 (ViMy), (2)
0K, = aRY +aKKy — 20K K", — VVa+ (Vi3 Ky + (V85 K + 85V, K5 (3)
+RiiH + Skij./\/lk + Tkij(ka) + Sklij(vk/\/lz), (4)

with constraint equations
H = R® 4+ K? - K;; K", (5)
M; = V,K’; — VK. (6)

We can write the adjusted constraint propagation equations as

O/H = (original terms) + H{""[(2)] + H;m“&[@)] + HY™0:0,](2)] + HZ‘"[(KL)], (7)
Oy M,; = (original terms) + M;;""[(2)] + Ma/""0;[(2)] + M3,""[(4)] + My?™"0;[(4)]. (8)



Original ADM vs Standard ADM
Original ADM | (ADM, 1962)  the pair of (h;;, 7).

L = —gR=VhN[®R - K*+ KK, 7%= ;}f — Vh(K" — Kh'),
]
H = Wijh@'j — ,C
oH N 1
&hij = 57Tij = 2\/—5(71'@‘]' — ihiﬂT) + QD(ZNJ),
. OH . 1 . 1 N .. 1 N . . 1 .
ij o — —/hN B)pi; _ ~(3) I R N/ - mn 2 _ 9 (qin nj - ij
Oy Shi VAN (PR 5 R )+2\/ﬁ (T 27r) \/E(TI' 7'(' ST )
+Vh(D'D'N — hD™D,,N) + VhD,,(h~?N"7ii) — 2z D, N7)

Standard ADM | (York, 1979)  the pair of (h;;, Kjj).

(9th¢j == —QNKM + l)j]\[Z + DZ’N]',
0 K;; = N(®R; + KK;j) —2NKyK'; — DiD;N + (D;N"™) Ky + (D;N™) Ky + N D, K

In this converting process, H was used.
That is, the standard ADM is already adjusted.




Constraint propagation of ADM systems

(1) Original ADM vs Standard ADM

0 the standard ADM
—1/4 the original ADM

e The constraint propagation egs keep the first-order form (cf Frittelli, PRD55(97)5992):

0(2) = Come g 20005 o

The eigenvalues of the characteristic matrix:
A= (8,68, 8"+ Ja2ll(1 + 4ky))

symmetric hyperbolic when k; = 3/2

The hyperbolicity of (1): { strongly hyperbolic ~ when o>y!(1 + 4k;) > 0

With the adjustment R;; = k1ay;; and other multiplier zero, where k| = {

weakly hyperbolic ~ when a?7"(1 + 4k;) > 0

e On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues

AL = (0,0, £y —E2(1 + 4r1)).

(two Os, two pure imaginary) for the standard ADM BETTER STABILITY
(four Os) for the original ADM

That is, {



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)

a) (b)
no adjustments (standard ADM)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kr = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two

eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Orvij = —2ak;+ Vb + V0,
0K; = aR? +aKK;j — 20K K", — V,V,a+ (V8" Ky + (V8" K + 8V K + kpav H,



Constraint propagation of ADM systems

(2) Detweiler’s system

Detweiler's modification to ADM [PRD35(87)1095] can be realized in our notation as:
Py = —La’yy,
Rij = La’(Kj; — (1/3)Kv),
Sfj = Lozz[S(@(iozﬁf) — (éboz)%ﬂkl],
sf} = La3[25@5§) — (1/3)7:9™), and else zero, where L is a constant.
e This adjustment does not make constraint propagation equation in the first order form, so
that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.

e For the Minkowskii background spacetime, the adjusted constraint propagation equations
with above choice of multiplier become

OH = —2(0;M;)+4L(0;0;/H),
OM; = —(1/2)(0/H) + (L/2)(0x0rM;) + (L/6)(0;0pMy).
Constraint Amp. Factors (the eigenvalues of their Fourier expression) are

Al = (—(L/2)k*(multiplicity 2), —(TL/3)k* & (1/3)\/k2(=9 + 25L2k2).)

This indicates negative real eigenvalues if we chose small positive L.



Detweller’s criteria vs Qur criteria

e Detweiler calculated the L2 norm of the constraints, C',, over the 3-hypersurface and imposed

its negative definiteness of its evolution,
Detweiler's criteria < (%/ZC’?M dv <0,
(0%

This is rewritten by supposing the constraint propagation to be 0,C, = Aaﬁég in the Fourier
components,

&0 /lZCA'aéa dV = /ZA&ﬁCA'géa -+ C’&Aaﬁég dV < 0, V non zero C’a

& eigenvalues of (A + AT) are all negative for V.

e Our criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria © Detweiler's criteria

e We remark that Detweiler's truncations on higher order terms in C-norm corresponds our
perturbative analysis, both based on the idea that the deviations from constraint surface (the
errors expressed non-zero constraint value) are initially small.



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)
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Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) k;, = +1/2, and (c¢) Kk, = —1/2.

Oyyij = (original terms) + P,;’H.
0, K;; = (original terms) + R;;/H + Skz‘,jMIg - s"’lijw,f/\/u),
where P,; = —rkpa’y;;, Rij= ko’ (K — (1/3)K7;),
S*ij = kLa’3(0u)df) — (Bra)yy™], 8™y = ka0 — (1/3)7iM],



Example 3: standard ADM (in isotropic/iEF coord.)
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Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is 1/2 < ry,. Fig. (b) is for the iEF
coordinate (1) and we plot lines on the ¢ = 0 slice for each expression. The solid four lines and the dotted four lines with circles
are real parts and imaginary parts, respectively.



Example 4: Detweiler-type adjusted (in iEF /PG coord.)
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Figure 4: Similar comparison for Detweiler adjustments. xk;, = +1/2 for all plots.



Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column ‘Ist?” and “TRS’ are
the same as in table 1. The effects to amplification factors (when k > 0) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The ‘N/A’ means
that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does not change the AFs effectively according to our conjecture; ‘enl./red./min.” means
enlarge/reduce/minimize, and ‘Pos./Neg.’ means positive/negative, respectively. These judgements are made at the » ~ O (10M) region on their r = O slice.

Noin Schwarzschild/isotropic coordinates iEF/PG coordinates
No table 1 Adjustment Ist?  TRS  Real Imaginary Real Imaginary
0 0 - no adjustments yes - - - - -
P-1 2-P P;j —krady; i no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
pP-2 3 P;j —KLQYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-3 - Pij P, = —kor Py = —ka no no slightly enl.Neg. not apparent  slightly enl.Neg. not apparent
P-4 - Pij —KYij no no makes 2 Neg. not apparent ~ makes 2 Neg. not apparent
P-5 - Pij —KVyr no no red. Pos./enl.Neg. not apparent  red.Pos./enl.Neg. not apparent
Q-1 - Q",-j K()lﬂk)/ij no no N/A N/A Kk ~ 1.35 min. vals.  not apparent
Q-2 - ok; i Q' =xk no yes red. abs vals. not apparent  red. abs vals. not apparent
Q-3 - Qk,-j Q"ij = «kyijor Q" = kay;j no yes red. abs vals. not apparent  enl.Neg. enl. vals.
Q-4 - ok, i Q" vy = KVyr no yes red. abs vals. not apparent  red. abs vals. not apparent
R-1 1 Rij KFaYij yes yes kp = —1/4 min. abs vals. kp = —1/4 min. vals.
R-2 4 Rij Ry = —kpaor Ry = —ky, yes no not apparent not apparent  red.Pos./enl.Neg. enl. vals.
R-3 - Rij R,y = —KYpr yes no enl. vals. not apparent  red.Pos./enl.Neg. enl. vals.
S-1 2-S sk, 1 KLOZZ[3(3(,'O[)5§) — ()i jy“ ] yes no not apparent not apparent  not apparent not apparent
S-2 - sk; 1 way® @y, i) yes no makes 2 Neg. not apparent  makes 2 Neg. not apparent
p-1 - pk,-j plij = —Kkay;j no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - pk,-j P =Kka no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - p"ij P = KAy, no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - q"l,-j q"i; = Kkay;; no no K = 1/2 min. vals.  red. vals. not apparent enl. vals.
q-2 - g~ i 4" ==Ky, no yes red. abs vals. not apparent  not apparent not apparent
-1 - rk; i r'i; = Kkayij no yes not apparent not apparent  not apparent enl. vals.
r-2 - r"ij ' = —ka no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - rk,-j e = =KoYy no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s skl,-j kro’ [8{‘;85.) — (1/3)yij adl no no makes 4 Neg. not apparent  makes 4 Neg. not apparent
s-2 - skl i s = —Kkayij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - s"'[,-j S = —KA Yy no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
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Comparisons of Adjusted ADM systems (Teukolsky wave)

3-dim, harmonic slice, periodic BC HS original Cactus/GR code
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Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 243, Az = (.25, iterative

Crank-Nicholson method.



“Einstein equations” are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

e the adjustment of the system I,

adjust term to @Kij = K1y
S ()

~—

preserves TRI. ... so the AFs remain zero (unchange).

e the adjustment by (a part of) Detweiler

adjust term to ?L%j =—L a1

—~~ -
(=) () (+) (1) (+)
violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the “ADM equations”.




An Evolution of Adjusted BSSN Formulation
by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026
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Kerr-Schild BH (0.9 J/M), excision with cube, 1+ log-lapse, ['-driver shift.

_ 2. 9
OF = ()4 D8, — (x+ )0, x=2/3 for (A4)-(A8)
8{%]' = ( . ) — IiOz’%jH k=0.1~0.2 for (A5), (AG) and (A8)



A Classification of Constraint Propagations

(C1) Asymptotically constrained :

Violation of constraints decays (converges to zero).

(C2) Asymptotically bounded :

Violation of constraints is bounded at a certain value.

(C3) Diverge :
At least one constraint will diverge.

Note that (C1) C (C2).

-~

(C1)
Decay

ch) Bounded

(C3)

Diverge

~

/

error

Diverge

Constrained,
\ or Decay
»

time




A Classification of Constraint Propagations (cont.)

CQG 20 (2003) L31

(C1) Asymptotically constrained :
Violation of constraints decays (converges to zero).

< All the real parts of CAFs are negative.

(C2) Asymptotically bounded :
Violation of constraints is bounded at a certain value.

=

(a) All the real parts of CAFs are not positive, and

bl) the CP matrix M“; is diagonalizable, or
p
(b2) the real part of the degenerated CAF's is not zero.

(C3) Diverge :
At least one constraint will diverge.



A flowchart to classify the fate of constraint propagation.

Q1: Isthere a CAF which real part is positive?
NO / YES » Diverge

v

Q2: Are all the real parts of CAFs negative?
NO / YES

v

Q3: Is the constraint propagation matrix diagonalizable?

Asymptotically
Constrained

NO / YES » Asymptotically
* Bounded
Q4: Is areal part of the degenerated CAFs is zero?
YES /' NO > Asymptotically
* Bounded
Q5: Is the associated Jordan matrix diagonal?
NO / YES » Asymptotically
* Bounded

Diverge



Summary http://atlas.riken.go. jp/~shinkai/

Towards a stable and accurate formulation for numerical relativity

We tried to understand the background in an unified way.
1. Our Observation = “Stability will change by adding constraints in RHS”
e Jiu’ = f(u®, Oyu’,--+) +F(C 0,C", - -+), named “Adjusted System”

2. Our proposal = “Evaluate eigenvalues of constraint propagation eqns”
e 0,C" = g(C" 0,C", - ) +G(C, 0,C, - - +)

e Fourier-mode analysis allows us to discuss lower-order terms.

C’l Constraint C’l
d| ¢ |=| Propagation : |, Eigenvalues = CAFs
Cy Matrix Cy

e Conjecture: Stable formulation if CAFs have more

(A) negative real-part (the constraints are forced to be diminished), or
(B) non-zero imaginary-part (the constraints are propagating away).

When re-formulating the system, evaluation of CAFs may be an alternative
guideline to hyperbolization.




Studies in progress ...(1)... http://atlas.riken.go.jp/~shinkai/

e Construct a robust adjusted system

(1) dynamic & automatic determination of x under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations

0 oC*
=R, ith  C%x;, 1) ~
5 P + A e with  C%ux;,t) =0

— J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.)
Replace a holonomic constraint 97C = 0 as 9°C + ad,C + 3*C = 0.

— Park-Chiou (1988, J. Guidance), “penalty method”
Derive “stabilization eq.” for Lagrange multiplier \(¢).
— Nagata (2002, Multibody Dyn.)
Introduce a scaled norm, J = C*SC, apply 0;J +w?J =0, and adjust \(?).

e.g.) Efforts in Molecular Dynamics simulations
— Constant pressure ------ potential piston!
— Constant temperature ------ potential thermostat!! (Nosé, 1991, PTP)




http://atlas.riken.go.jp/~shinkai/

Studies in progress ...(2)...

e Construct a robust adjusted system

AMIomentum constr.

(2) target to control each constraint violation by
grow

adjusting multipliers.

CP-eigenvectors indicate directions of con-

straint grow/decay, if CP-matrix is diago- arow

nalizable. -
deca . .
Hamiltonian constr.

(3) clarify the reasons of non-linear violation in
the last stage of current test evolutions. decay

e Numerical comparisons of formulations, links to other systems, ...

— “Comparisons of Formulations” (Mexico NR workshop, 2002), gr-qc/0305023.
— with people here in Sydney!!





