Constraint Propagation Revisited
-— Adjusted ADM formulation for Numerical Relativity —-
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—— Proposal of a formulation for stable numerical evolution in General Relativity
—— Adjust ADM formulation with constraints ==>> Attractor System
—— A new criteria for adjusting rules

-— Numerica

1 Numerical Relativity and “Formulation” Problem

Numerical Relativity — Necessary for unveiling the nature of strong gravity

Gravitational Wave from colliding Black Holes, Neutron Stars, Supernovae, ...
— Relativistic Phenomena like Cosmology, Active Galactic Nuclei, ...
— Mathematical feedbacks to Singularity, Exact Solutions, Chaotic behavior, ...
— Labratory of Gravitational theories, Higher dimensional models, ...

Gravitationa Waves

Neutron Stars /
Elack Holes

LIZ0/VIRD/GECQ/TAMA, .. .

Best Einstein formulation for long-term stable and accurate simulation?

Many (too many) trials and errors, not yet a systematical understanding.

Blow up

error

Constrained / Surface
(satisfies /Einstein's constraints)

2 Idea of “Adjusted system” and Our Conjecture

Formulate a system which is "asymptotically constrained” against a violation of constraints
*Asymptotically Constrained System”- Constraint Surface as an Attractor

method 1: A-system (Brodbeck et al, 2000)

e Add aritificial force to reduce the violation of con-
straints

e [0 be guaranteed if we apply the idea to a symmet-
ric hyperbolic system.

method 2: Adjusted system (Yoneda HS, 2000, 2001)

¢ We can control the violation of constraints by ad-

justing constraints to EoM.
Constrained / Surface

(satisties /Einstein's constraints) * Eigenvalue analysis of constraint propagation equa-

tions may prodict the violation of error.

¢ [his idea is applicable even if the system is not sym-
metric hyperbolic. =
for the ADM/BSSN formulation, too!!

4 |Additional Idea (NEW)

In order to avoid blow-up in the last stage, we prohibid the adjustments which
simply produce self-growing terms (C?) in constraint propagation, 8;C.

e If RHS of the constraint propagation accidentally includes C* terms,
8,C = —aC + bC*
the solution will blow-up as

—aCyexp(—at)
—a + bCy — bC, exp(—at)

In the ADM system, we have not to put too much confidence for the adjustments using p, g, P, CJ)-
terms for the ADM formulation.
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test with 3D Teuko

The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime. shift vector, Ni
Evolve 12 variables (v;;, K;;) surface normal line| / Rl L
with a choice of gauge condition. i S i i s
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Maxwell egs. ADM Einstein eq.
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Best Einstein formulation for long-term stable and accurate simulation?

Many (too many) trials and errors, not yet a systematical understanding.

Blow up

/

Blow up

| )~ A

time

Mathematically equivalent formulation, but differ in its stability!

strategy 0:  Arnowitt-Deser-Misner formulation

strategy 1: Shibata-Nakamura's (Baumgarte-Shapiro's) modifications to the standard ADM

strategy 2. Apply a formulation which reveals a hyperbolicity explicitly

strategy 3: Formulate a system which is "asymptotically constrained” against a violation of constraints

Key Fact: By adding constraints in RHS, we can kill error growing modes.

'The Idea
General Procedure

1. prepare a set of evolution egs. Bt = f(u®, Hus,---)

2. add constraints in RHS B = f(us, Bus,- ) + F(C, &C", - -

3. choose appropriate F(C", 8,0, )
to make the system stable evolution
How to specify F(C”, &C", -] ?
4. prepare constraint propagation egs. 8iC? = g(C*, &C?, - --)
5. and its adjusted version B8:Ct = g(C®, B0, ++ ) + G(C®, B2, + 1)

6. Fourier transform and evaluate eigenvalues &,C* = A(C*) C*

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more
stable.

5 Numerical Test

Comparisons of Adjusted ADM systems (linear wave)
Original GR code based on Cactus framework.

ADM (standard)

simplified Detweiler k=0.01

simplified Detweiler k=0.01, noc +0.01
simplified Detweiler k=0.01, nac +0.05
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10% | | | Violation of Hamiltonian constraints versus time:

Adjusted ADM systems applied for Teukolsky wave

. initial data evolution with harmonic slicing, and

! | ' | with periodic boundary condition. Cactus/GR code

"“ was used. Grid = 24% Az = 0.25, iterative Crank-
! Nicholson method.

error (norm of Hamiltonian conxtraint)
=
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o o 0o 150 200 2% longer evolution is available, but not yet perfect...
time (to be continued)
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sky wave evolution ==>> Better & Longer Stability

3 Adjusted ADM systems

We adjust the standard ADM system using constraints as:
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with constraint equations

H = R+ K*— K;K",
.:'V[,g ; vjf{j;—?gﬂ.

We can write the adjusted constraint propagation equations as
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The constraint propagation equations of the original ADM equation:

e Expression using H and M, (1)
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¢ Expression using H and M, (2)
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e Expression using H and M, (3): by using Lie derivatives along an”,
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e Expression using ~;; and Kj;
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where we expressed ' = I'iy".

Comparisons of Adjusted ADM systems (linear wave)

error (norm of Hamiltonian conxtraint)

Original GR code based on Cactus framework.

— ADM (standard)
Detweiler k=0.01
Detweiler k=0.01, noc k=0.01

Detweiler k=0.01, noc k=0.05
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Violation of Hamiltonian constraints versus time:
Adjusted ADM systems applied for Teukolsky wave
initial data evolution with harmonic slicing, and
with periodic boundary condition. Cactus/GR code
was used. Grid = 243, Az = (.25, iterative Crank-
Nicholson method.
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— Newly added term works effectively. 10%

o e e longer evolution is available, but not yet perfect...
time (to be continued)
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