Gravitational-wave detector using Optical Lattice Clocks in Space

Hisaaki Shinkai (Osaka Inst. Tech), Toru Tamagawa (RIKEN), Atsushi Noda (JAXA), Hidetoshi Katori (U Tokyo/RIKEN), Jun'ichiro Makino (Kobe U/RIKEN), Toshikazu Ebisuzaki (RIKEN)

Cassini's Doppler tracking (2001-2002) can be improved 3-order mag. with current technologies

"Cassini+++", "Cassini++++" : sensitivity curve, detectable distance D
 Event rate by hierarchical formation model of SMBH

2018/7/3 Marcel Grossmann 15@Rome

1. Introduction : Optical Lattice Clock

"Optical Lattice Clock"
 H. Katori (JPS Journal, 2002, p754)
 trap atoms at standing laser wave read frequency of transient phase

Cs atomic clock $\Delta t/t = 5 \times 10^{-16}$ Optical Lattice Clock (2015) 10⁻¹⁸

magic freq. compensates multi-polarization

OLC targets $\Delta t/t = 10^{-19}$

grav. potential of 15m difference relativistically measured ± 5cm

JPS J, 2017, p84

(1 cm on the Earth $\Delta t/t = 1.1 \times 10^{-18}$)

1. Introduction

Gravitational Wave Detectors and Sources

http://rhcole.com/apps/GWplotter/

1. Introduction : Existing plans for space GW observatories

LISA (ESA/NASA)	B-DECIGO \Rightarrow DECIGO (Japan)	
Laser Interferometer Space Anntena	Deci-hertz Interferometer GW Observatory	
mHz range	0.1Hz range	
2030 launch	proposed	
3 satellites at L4 of Sun-Earth	around earth 2000km 3 sattelites \Rightarrow Sun orbit	
2.50 x 10 ⁶ km	100 km \Rightarrow 1000 km	
robust to acceleration noise		
light transponder	Fabry-Perot interferometer	
	robust to shot-noises	
drag-free flight	drag-free flight	
Doppler tracking with Laser beam	same as ground interferometer	

2. Doppler tracking of Cassini Saturn Explorer

Cassini 2001-2002 (Armstrong, LRR 2006)

G. Cassini (1625-1712)

Cassini (1997-2017)

Table 4: Required improvement in subsystems to improve overall Doppler sensitivity by a factor of 10 relative to Cassini-era performance.

Noise source	Comment (σ_y at $\tau = 1000$ s)	Require	d
		improve	ment
Frequency standard	currently FTS + distribution $\simeq 8 \times 10^{-16}$	$\simeq 8 X$	atomic clock
Ground electronics	currently $\simeq 2 \times 10^{-16}$	$\simeq 2 X$	tuanaankava
Tropospheric scintillation	currently $\simeq 10^{-15}$ under favorable conditions	$\simeq 10 \mathrm{X}$	troposphere
Plasma scintillation	Cassini-class radio system probably adequate for	$\simeq 1 X$	plasma
	calibration to $\simeq 10^{-16}$		
Spacecraft motion	currently $\simeq 2 \times 10^{-16}$	$\simeq 2 X$	radiation pressure of Sun
Antenna mechanical	currently $\simeq 2 \times 10^{-15}$ under favorable conditions	$\simeq 20 {\rm X}$	control technology

2. Improvement of Doppler sensitivity (1)

monitor the time by Opt Lattice Clocks
 in 3 satellites
 need to make it portable

If radio transmission,

use two frequency ranges (double tracking) to check phase differences due to interplanetary plasma

If light transmission, no effects from plasma.

need R&D

1 AU baseline 🕨 10-5Hz

Table 4: Required improvement in subsystems to improve overall Doppler sensitivity by a factor of 10 relative to Cassini-era performance.

Noise source	Comment (σ_y at $\tau = 1000$ s)	Required improvement	
Frequency standard	currently FTS + distribution $\simeq 8 \times 10^{-16}$	$\simeq 8X$ atomic clock	Opt. Lattice Clock
Ground electronics	currently $\simeq 2 \times 10^{-16}$	$\simeq 2 \mathrm{X}$	
Tropospheric scintillation	currently $\simeq 10^{-15}$ under favorable conditions	$_{ m \simeq 10X}$ troposphere	In space
Plasma scintillation	Cassini-class radio system probably adequate for calibration to $\simeq 10^{-16}$	$\simeq 1X$ plasma	light transmission
Spacecraft motion	currently $\simeq 2 \times 10^{-16}$	$_{\simeq2\mathrm{X}}$ rad. pressure	solar panel parasol
Antenna mechanical	currently $\simeq 2 \times 10^{-15}$ under favorable conditions	$\simeq 20 \mathrm{X}$ control technol	ogy

2. Improvement of Doppler sensitivity (2)

rad. press. F=P/c P=1.3 kW/m² 1000 kg, 10 m² acceleration $a=5x10^{-8}$ m/s²

ΔP/**P** ≒ 1/1000

∆a/a ≒ 10⁻¹¹

1 AU baseline 🕨 10⁻⁵Hz

b solar panel parasol $\Delta g/g = 10^{-12}$

Table 4: Required improvement in subsystems to improve overall Doppler sensitivity by a factor of 10 relative to Cassini-era performance.

Noise source	Comment (σ_y at $\tau = 1000$ s)	Required improvement	
Frequency standard	currently FTS + distribution $\simeq 8 \times 10^{-16}$	$\simeq 8X$ atomic clock	Opt. Lattice Clock
Ground electronics	currently $\simeq 2 \times 10^{-16}$	$\simeq 2 \mathrm{X}$	
Tropospheric scintillation	currently $\simeq 10^{-15}$ under favorable conditions	$_{ m \simeq 10X}$ troposphere	In space
Plasma scintillation	Cassini-class radio system probably adequate for calibration to $\sim 10^{-16}$	$\simeq 1X$ plasma	light transmission
Spacecraft motion	currently $\simeq 2 \times 10^{-16}$	$_{\simeq2X}$ rad. pressure	solar panel parasol
Antenna mechanical	currently $\simeq 2 \times 10^{-15}$ under favorable conditions	$\simeq 20 \mathrm{X}$ control techno	logy

2. Improvement of Doppler sensitivity (3)

With current technologies, we can obtain 3-order less than Cassini !

3. Previous proposals (Kolkowitz+ 2016)

Kolkowitz +
PRD94(2016)124043
3 mHz or 30 mHz -10 Hz
5x10 ⁷ km or 5x10 ⁶ km
2 satellites, laser link
compare freq. w Opt Lattice
Clock
drag-free flight
Doppler shift with Laser beam

see also Loeb, Maoz, 1501.00996 Vutha, New J. Phys. 17, 063030

- 1. Each satellite has Opt Lattice Clock, send out each time to others.
- Each satellite recognizes
 direction · distance · velocity
 of others, and we know all of them.

- 1. Each satellite has Opt Lattice Clock, send out each time to others.
- Each satellite recognizes
 direction · distance · velocity
 of others, and we know all of them.

- 1. Each satellite has Opt Lattice Clock, send out each time to others.
- Each satellite recognizes

 direction · distance · velocity
 of others, and we know all of them
 (including the potentioal of the Sun.)
 Note: effects of planets are O(month).

1. Each satellite has Opt Lattice Clock, send out each time to others.

- Each satellite recognizes

 direction · distance · velocity
 of others, and we know all of them
 (including the potentioal of the Sun.)
 Note: effects of planets are O(month).
 - 3. When GW passes, we know its differences.

If the events are $\sim 10s$ (/yr), then we can calibrate them well.

2. Improvement of Doppler sensitivity (3)

With current technologies, we can obtain 3-order less than Cassini !

3. GW obs. using Optical Lattice Clocks : target sources

equal-mass Binary BH inspiral at 1Gpc

3. GW obs. using Optical Lattice Clocks : target sources

3. GW obs. using Optical Lattice Clocks : target sources

3. GW obs. using Optical Lattice Clocks : detectable distance

S/N=10

3. GW obs. using Optical Lattice Clocks : detectable distance

S/N=100

3. GW obs. using Optical Lattice Clocks : detectable distance q=0.2

Hisaaki Shinkai (Osaka Inst. Tech.)

2018/07/03 Marcel Grossmann 15 @ Rome

3. GW obs. using Optical Lattice Clocks : detectable distance q=0.2

Hisaaki Shinkai (Osaka Inst. Tech.)

2018/07/03 Marcel Grossmann 15 @ Rome

4. SMBH formation model : IMBHs' hierarchical mergers

HS, Kanda, Ebisuzaki, ApJ, 835 (2017) 276 [arXiv:1610.09505]

4. SMBH formation model : IMBHs' hierarchical mergers

4. SMBH formation model : IMBHs' hierarchical mergers

Event Rate

Summary

LISA (ESA/NASA)	B-DECIGO ⇒ DECIGO (Japan)	Kolkowitz +	Our Proposal
mHz range	0.1Hz range	3 mHz or 30 mHz -10 Hz	0.1 mHz —1 Hz
3 satellites at L4 of Sun-Earth	around earth 2000km 3 sattelites \Rightarrow Sun orbit	2 satellites	Sun-Earth L1-L4-L5
2.50 x 10 ⁶ km	100 km \Rightarrow 1000 km	5x10 ⁷ km or 5x10 ⁶ km	1 AU
		laser link	light or radio link
light transponder	Fabry-Perot interferometer	compare freq. w Opt Lattice Clock	monitor time w Opt Lattice Clocks
drag-free flight	drag-free flight	drag-free flight	no drag-free
Doppler tracking with Laser beam	same as ground interferometer	Doppler shift with Laser beam	Doppler tracking
robust to accel. noise	robust to shot-noise		available at current tech

 Cassini's Doppler tracking (2001-2002) can be improved 3-order mag. with current technologies
 Opt Lattice Clocks, 3 satellites in space, Solar panel parasol
 "Cassini+++", some range is better than LISA sensitivity
 "Cassini+++", stellar-mass BH merger prediction 20 events/yr
 "Cassini++++", + IMBH inspiral 30 events/yr backup

原子時計を宇宙空間に設置する計画

The Space-Time Explorer and QUantum Equivalence Principle Space Test (STE-QUEST) ESA, 2024年打ち上げ予定. 地球周回軌道にルビジウム同位体原子干渉計. 等価原理検証など.

Primary Atomic Reference Clock in Space (PARCS)

NASAが2008年にセシウム原子時計をISSに搭載しようと計画したものだが, Bushの政策Vision for Space Exploration (VSE) により中止.

Galileo Global Navigation Satellite System

European GNSS Agency とESAが2019年完成目指して、構築しているヨーロッパ発の非軍事GPS. 各衛星は、水 素メーザーとルビジウム原子時計を持つ.

Atomic Clock Ensemble in Space (ACES)

ESAによる計画. ISSに, セシウム原子時計(PHARAO)と水素メーザー(SHM) の2つの原子時計を設置するもの. 2018年に日本のHTVによって打ち上げ予定.

Deep Space Atomic Clock (DSAC)

NASA JPLが計画する,水銀イオン原子時計を用いて,ナビゲーションの精度を高めようとする計画. 2018年, SpaceX Falcon で地球周回軌道に打ち上げ予定.

光格子時計を宇宙空間に設置する計画

space optical clock mission (SOC) ESA. ISSに光格子時計を搭載して、地球重力赤方偏移、太陽重力、等価原理検証を目指そうとするもの。 2010年からスタート、10年後(もうすぐ?)にISS搭載を目指す。