Latest Status of KAGRA

KAGRA plans to join LV Observation Run 3 from the end of 2019.

July 10, 2019 @ GR22/Amaldi 13 at Valencia, Spain

• Underground and Cryogenic interferometric gravitational-wave detector at Kamioka, Japan • KAGRA finished all the installations by April 2019, and extensively under commissioning.

> Hisaaki Shinkai (Osaka Inst. Tech.) KAGRA Scientific Congress, board chair

after my talk today, Takayuki Tomaru Cryogenic mirror system in KAGRA **Yuta Michimura** Prospects for upgrading the KAGRA gravitational wave telescope

KAGRA (Kamioka GW Observatory)

◆ Underground and Cryogenic interferometric gravitational-wave detector at Kamioka, Japan

KAGRA collaboration

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA

LATM

UWM

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Default-author list 2018 has 200 members Obs. shift candidate list has 260 names.

Organize Face-to-Face meeting 3 times (April/August/Dec) / year

F2F Aug. 2019 @ U. Toyama, Japan F2F December 2019 @ U. Tokyo, Japan

Organize International Workshop 2 times / year

> KIW5 Feb. 2019 @ Perugia, Italy KIW6 June 2019 @ Wuhan, China KIW7 May 2020 @ NCU, Taiwan

Organization of KSC (KAGRA Scientific Congress)

KAGRA collaboration papers

PTEP

Prog. Theor. Exp. Phys. 2018, 013F01 (23 pages) DOI: 10.1093/ptep/ptx180

Construction of KAGRA: an underground gravitational-wave observatory

T. Akutsu¹, M. Ando^{1,2,3}, S. Araki⁴, A. Araya⁵, T. Arima⁶, N. Aritomi³, H. Asada⁷, Y. Aso¹ S. Atsuta⁸, K. Awai^{9,10}, L. Baiotti¹¹, M. A. Barton¹, D. Chen⁹, K. Cho¹², K. Craig⁹, R. DeSalvo^{13,14}, K. Doi^{9,10,15}, K. Eda^{2,3}, Y. Enomoto⁹, R. Flaminio¹, S. Fujibayashi¹⁶, Y. Fujii¹ M.-K. Fujimoto¹, M. Fukushima¹, T. Furuhata¹⁵, A. Hagiwara⁴, S. Haino¹⁷, S. Harita⁸, K. Hasegawa⁹, M. Hasegawa¹⁸, K. Hashino¹⁵, K. Hayama^{9,10}, N. Hirata¹, E. Hirose^{9,10}, B. Ikenoue¹, Y. Inoue¹⁷, K. Ioka¹⁹, H. Ishizaki¹, Y. Itoh^{2,*}, D. Jia¹⁸, T. Kagawa¹⁵, T. Kaji⁶, T. Kajita^{9,10}, M. Kakizaki¹⁵, H. Kakuhata¹⁸, M. Kamiizumi^{9,10}, S. Kanbara¹⁵, N. Kanda⁶, S. Kanemura¹⁵, M. Kaneyama⁶, J. Kasuya⁸, Y. Kataoka⁸, K. Kawaguchi¹⁹, N. Kawai⁸, S. Kawamura^{9,10}, F. Kawazoe²⁰, C. Kim^{21,22}, J. Kim²³, J. C. Kim²⁴, W. Kim²⁵, N. Kimura^{4,9}, Y. Kitaoka⁶, K. Kobayashi¹⁵, Y. Kojima²⁶, K. Kokeyama^{9,10}, K. Komori³, K. Kotake²⁷, K. Kubo²⁸, R. Kumar⁴, T. Kume⁴, K. Kuroda⁹, Y. Kuwahara³, H.-K. Lee²⁹, H.-W. Lee²⁴, C.-Y. Lin³⁰, Y. Liu⁹, E. Majorana³¹, S. Mano³², M. Marchio¹, T. Matsui¹⁵, N. Matsumoto^{33,34}, F. Matsushima¹⁵, Y. Michimura³, N. Mio³⁵, O. Miyakawa^{9,10}, K. Miyake¹⁸, A. Miyamoto⁶, T. Miyamoto^{9,10}, K. Miyo⁹, S. Miyoki^{9,10}, W. Morii³⁶, S. Morisaki^{2,3}, Y. Moriwaki¹⁵, Y. Muraki⁸, M. Murakoshi²⁸, M. Musha³⁷, K. Nagano⁹, S. Nagano³⁸, K. Nakamura¹ T. Nakamura¹⁶, H. Nakano¹⁶, M. Nakano¹⁸, M. Nakano^{9,10}, H. Nakao⁶, K. Nakao⁶ T. Narikawa⁶, W.-T. Ni^{39,40}, T. Nonomura²⁸, Y. Obuchi¹, J. J. Oh²⁵, S.-H. Oh²⁵, M. Ohashi^{9,10}, N. Ohishi^{1,10}, M. Ohkawa⁴¹, N. Ohmae³⁵, K. Okino⁴², K. Okutomi⁴³, K. Ono⁹, Y. Ono⁴⁴, K. Oohara⁴¹, S. Ota²⁸, J. Park¹², F. E. Peña Arellano¹, I. M. Pinto^{13,14}, M. Principe^{13,14} N. Sago⁴⁵, M. Saijo⁴⁶, T. Saito⁴¹, Y. Saito^{9,10}, S. Saitou¹, K. Sakai⁴⁷, Y. Sakakibara⁹, Y. Sasaki⁴⁸, S. Sato^{28,†}, T. Sato⁴¹, Y. Sato⁴, T. Sekiguchi^{9,10}, Y. Sekiguchi⁴⁹, M. Shibata¹⁹, K. Shiga⁴¹, Y. Shikano^{50,51}, T. Shimoda³, H. Shinkai⁵², A. Shoda¹, N. Someya²⁸, K. Somiya^{8,‡}, E. J. Son²⁵, T. Starecki⁵³, A. Suemasa³⁷, Y. Sugimoto¹⁵, Y. Susa⁸, H. Suwabe⁴¹, T. Suzuki^{4,9}, Y. Tachibana⁸, H. Tagoshi⁶, S. Takada⁵⁴, H. Takahashi⁴⁸, R. Takahashi¹, A. Takamori⁵, H. Takeda³, H. Tanaka^{9,10}, K. Tanaka⁶, T. Tanaka¹⁶, D. Tatsumi¹, S. Telada⁵⁵, T. Tomaru^{4,9}, K. Tsubono³, S. Tsuchida⁶, L. Tsukada^{2,3}, T. Tsuzuki¹, N. Uchikata⁶, T. Uchiyama^{9,10}, T. Uehara^{56,57}, S. Ueki⁴⁸, K. Ueno⁵⁸, F. Uraguchi¹, T. Ushiba³, M. H. P. M. van Putten^{59,60}, S. Wada³, T. Wakamatsu⁴¹, T. Yaginuma⁸, K. Yamamoto^{9,10}, S. Yamamoto⁵², T. Yamamoto^{9,10}, K. Yano⁸, J. Yokoyama^{2,3,61}, T. Yokozawa⁶, T. H. Yoon⁶², H. Yuzurihara⁶, S. Zeidler¹, Y. Zhao⁶³, and L. Zheng64

(KAGRA Collaboration)

Prog. Theor. Exp. Phys. (2018) 013F01 [arXiv:1712.00148] Construction & iKAGRA operation (2016)

nature astronomy

KAGRA: 2.5 generation interferometric gravitational wave detector

KAGRA collaboration

The recent detections of gravitational waves (GWs) reported by the LIGO and Virgo collaborations have made a significant impact on physics and astronomy. A global network of GW detectors will play a key role in uncovering the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA, a new GW detec tor with two 3 km baseline arms arranged in an 'L' shape. KAGRA's design is similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-temperature feature is and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered to be an important feature for the third-generation GW detector concept (for example, the Einstein Telescope of Europe or the Cosmic Explorer of the United States). Hence, KAGRA is often called a 2.5-generation GW detector based on laser interferometry. KAGRA's first observation run is scheduled in late 2019, aiming to join the third observation run of the advanced LIGO-Virgo network. When operating along with the exist-ing GW detectors, KAGRA will be helpful in locating GW sources more accurately and determining the source parameters with higher precision, providing information for follow-up observations of GW trigger candidates.

J direct detection of gravitational waves (GWs)¹. The existence tors Super-Kamiokande and KamLAND. Kamioka is a small town of GWs has been believed since Russel Hulse and Joseph Taylor dis- located 1.5 hour driving distance from the city of Toyama, with its covered the binary pulsar PSR B1913 + 16 in 1974 (ref. ²). The long- biggest claim to fame being an old mine. term radio observation of this system has shown that the observed

Nature Astronomy, 3 (2019) 35. [arXiv:1811.08079]

introduction & history

Search or Artic arXiv.org > astro-ph > arXiv:1901.03569 (Help | Advanced Astrophysics > Instrumentation and Methods for Astrophysics First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA

KAGRA Collaboration: T. Akutsu, M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya, N. Aritomi, H. Asada, Y. Aso, S. Atsuta, K. Awai, S. Bae, L. Baiotti, M. A. Barton, K. Cannon, E. Capocasa, C-S. Chen, T-W. Chiu, K. Cho, Y-K. Chu, K. Craig, W. Creus, K. Doi, K. Eda, Y. Enomoto, R. Flaminio, Y. Fujii, M.-K. Fujimoto, M. Fukunaga, M. Fukushima, T. Furuhata, A. Hagiwara, S. Haino, K. Hasegawa, K.

PERSPECTIVE nttps://doi.org/10.1038/s41550-018-0658

eeing is believing. We were reminded of this proverb when we received the news of the discovery of GW150914, the first interferometer shares the area with the well-known neutrino detec-Figure 1 shows the location of KAGRA in Kamioka, Japan. The Compared with existing laser interferometers, KAGRA is tech-

orbital decay is well described by the energy/angular momentum loss due to GW emission as predicted by Einstein in 1915 (ref. ³). nologically unique in two features. Firstly, it is located in an under-ground site to reduce seismic noise. Secondly, KAGRA's test masses

Class. Quant. Grav. 36 (2019) 095015 [arXiv:1901.03053]

Vibration isolation

CQG accepted [arXiv:1901.03569]

phase-1 operation (2018)

articles on KAGRA / KSC newsletter

NEWS IN FOCUS

PHYSICS Tantalizing signs of superconductivity at nearroom temperature **p.12**

POLITICS Violence in Nicaragua engulfs scientists p.11

NEW YEAR Gene-editing. open access and seals with sensors to shape 2019 p.13

MATERIALS The scramble to understand a twisted form of graphene **p.15**

Japan's Kamioka Gravitational Wave Detector is scheduled to start up in 2019, joining a global network of interferometers

Japan to begin pioneering hunt for gravitational waves

The underground KAGRA detector will deploy ambitious technology to improve sensitivity.

BY DAVIDE CASTELVECCHI

L is in full clean-room attire. The physicist, waves (see 'Japan's wave hunter'). who works at the High Energy Accelerator

nside a house-sized scaffolding wrapped forth along two 3-kilometre, high-vacuum in thick plastic sheets, Takayuki Tomaru pipes, ready to sense the passage of gravitational

The ¥16.4-billion (US\$148-million) obser-Research Organization (KEK) in Tsukuba, vatory – Japan's Kamioka Gravitational

© 2019 Springer Nature Limited. All rights reserved.

When operations begin later this year, their job past few years, these machines have begun will be to bounce infrared laser beams back and to detect gravitational waves — long-sought ripples in the fabric of space-time, created by cataclysmic cosmic events such as the merging of two black holes or the collision of two neutron stars

With the addition of KAGRA, the growing Japan, is performing one of the most delicate Wave Detector (KAGRA) — will work on global network of detectors will enable astroand crucial tasks in the construction of a grav- the same principle as the two detectors of the physicists to locate the position of these feeble tational-wave observatory: installing one of Laser Interferometer Gravitational-Wave cosmic signals in the sky with greatly increased the machine's four mirrors, each a 23-kilogram Observatory (LIGO) in the United States precision. They will be able to dissect the cylinder of solid sapphire known as a test mass. and the Virgo solo machine in Italy. In the waves' properties, such as how they are 🕨

3 JANUARY 2019 | VOL 565 | NATURE | 9

ScienceNews

MENU

LATEST

EDITOR'S PICKS

BLOGS

NEWS IN BRIEF Scientists have chilled tiny electronics to a record low temperature MARCH 08, 2019

MOST VIEWED

SCIENCE VISUALIZED How droplets of oil or water can glow vibrant colors MARCH 08, 2019

MYSTERY SOLVED Microwaved grapes make fireballs, and scientists now know why BY FMILY MARCH 08, 2019

REVIEWS & PREVIEWS 'Skeleton Keys' unlocks the history and mysteries of bones Y SID PERKINS MARCH 08, 2019

VEWS IN BRIEF Merging magnetic blobs fuel the sun's huge plasma eruptions MARCH 07, 2019

Human encroachment threatens chimpanzee culture BY SUJATA GUPTA MARCH 07, 2019

How helpful gut microbes send signals that they are friends, not the search Japan's KAGRA experiment tests new techniques for spotting ripples in spacetime BY EMILY CONOVER 7:00AM, JANUARY 18, 2019

Magazine issue: Vol. 195, No. 3, February 16, 2019, p. 8

Science News 195 (2019 Feb) 8

https://www.sciencenews.org/

Nature 565 (2019 Jan) 30

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

SCIENCE NEWS NEEDS YOU Support nonprofit journalisn

Search Science News... Q

ICRR, UNIV. OF TOKYO

linked from

MAGAZIN

NEWS PHYSICS, ASTRONOMY, GRAVITATIONAL WAVES A new gravitational wave detector is almost ready to join

https://gwcenter.icrr.u-tokyo.ac.jp/en/

KAGRA SCIENTIFIC CONGRESS: COLLABORATORS' INFORMATION EXCHANGE

2019/04/18

KSC Newsletter

Issue 4

Einstein Telescope and KAGRA signed agreement to collaborate on the development of the common technologies

The 5th KAGRA International Workshop (KIW5) was held at Perugia, Italy. The third day of the workshop was named "The first KAGRA-Virgo-3G Detectors Workshop (KV3G)", where we discussed the project of Einstein Telescope (ET), one of the key gravitational-wave observatory plans in the future. The nascent ET collaboration (it will be formulated in April 2019) plans to construct a triangle-shape 10 km-armed laser-interferometer underground, and with cryogenic technology. Its core technologies match with our experiences.

Contents of this issue

- p-2 Directions: bKAGRA installation almost finished !!
- p-3 Future: Upgrading KAGRA?
- p-4 Kamioka Local: Hida Space Science Museum
- p-5 Report: Demographic Survey 2018 by diversity committee
- p-8 Meetings: F2F at NAOJ, F2F at ICRR, KIW6 at Wuhan, China
- p-10 Poster Award Winners
- p-11 Newly Joined: Aoyama Gakuin Univ., KIAA Peking Univ.
- p-13 New collaborators, We hear that ...

On February 16, 2019, at the gorgeous Sala dei Notari (hall of Notari), our PI, Takaaki Kajita, and the ET steering board chairmen, Michele Punturo and Harald Lück, signed a letter of intent to collaborate on the development of third generation detectors. The scope of the letter is quite general (see JGW-M1909820), but we believe it becomes a certain step forward for both of us. KIW5 and KV3G workshop had more than a hundred of participants. The meeting continued from the early morning to the late evening, but we enjoyed a small historical old city area, Perugia chocolates, and environment of AC Perugia (Perugia Calcio). We thank LOC members, especially Helios Vocca and Flavio Travasso for giving us this opportunity. 🍏

Brief History of KAGRA

calendar	2	010	2011	2012	2013	201/
year	2010				2013	2015
Project						
Start						
Tur	nne	el Exca	avation			
installatio	n					
						OK

= initial KAGRA iKAGRA **bKAGRA** = baseline KAGRA

[arXiv:1712.00148]

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

KAGRA

today

[arXiv:1901.03569]

Target Sensitivity & Schedule

Schedule plan for joining O3

In 2018 Feb, KAGRA decided to join 03 by accelerating all the installation.

The plan at 2018 June:

		2018							
Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Ма
									LIG
								Origi	inal
ITMX		X-a	arm					Ung	Indi
	Xend	со	m.		ETMX				I
		ETMY			Y-a	arm	FPMI		
		ΙТΙ	ΛY		со	om.		Back	up
Laser		mode o	cleaner					- Deci	
								posi	
			data	analys	is rehe	arsal			
	1								

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

(2018)

Schedule plan for joining O3

In 2018 Feb, KAGRA decided to join O3 by accelerating all the installation. KAGRA finished all the installation by the end of April 2018. The plan at 2018 June:

		2018								20	019						2020			
Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	
												LIGO	/VIRG	0 Obse	ervatio	n 3				
								Orig	inal Pla	an										
ІТМХ		X-a	arm				-		DRF	PMI (R	SE)		post	t com	nissio	ning	C	DRFPM	I (RSE)	
	Xend	co	om.		ETMX						-									
		ETMY			Y-a	arm	FPMI													
		ITI	MY		co	om.		Back	kup Pla	an 👘										
Laser		mode	cleaner																	
								pos	t comn	nissioi	ning								FPMI	
																				_
			data	analys	sis rehe	arsal					Data	Shari	ng wit	h KAG	RA-LI	GO-Vir	go			

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

(2018)

ר A Мрс n B Мрс

Schedule plan for joining O3

In 2018 Feb, KAGRA decided to join 03 by accelerating all the installation. KAGRA finished all the installation by the end of April 2018.

The plan now:

	Jan	Feb	Mar	Apr	May	
We are commissioning with						
FPMI with PR & SR.						
					Origi	n
Test Runs:					con	n
June 6 X-arm						
lung 19 PR SR						
July 13 interferometer test						
		1	1			

(now)

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

KAGRA suspension systems

Laser, Input-Output Optics, Auxiliary optics

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Vacuum & Facilities

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Cryogenic, Vibration Isolation, Mirrors

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Cryocoolers

Physical environment monitors

Chamber

for TM

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

) KAGRA Collaboration / Ray.Hori

identified 2Hz noise from cryocoolors noise from fans 13-59 Hz and 1135-2015 Hz 1-3 Hz magnetic field from cryocoolors

Commissioning tools

GPS 1230480018 + 512 s

Frequency [Hz]	Top channels									
0.00	VIS-BS_TM_OPLEV	VIS-ETMX_BF	VIS-ITMX_IP	VIS-BS_TM_OPLEV	VIS-ITMX_BF					
	_YAW_DIAG	DAMP_Y_IN1	_DAMP_Y_IN1	PIT_DIAG	DAMP_Y_IN1					
	_DQ	DQ	_DQ	_DQ	DQ					
	(0.19)	(0.15)	(0.14)	(0.14)	(0.12)					
0.12	VIS-ITMX_TM OPLEV_TILT _YAW_OUT _DQ (0.35)	VIS-ITMX_TM _OPLEV_TILT _PIT_OUT _DQ (0.34)	VIS-MCO_TM _OPLEV_PIT _OUT_DQ (0.17)	PEM-IXV_GND _TR120QTEST _Y_OUT_DQ (0.15)	PEM-IXV_GND _TR120Q_Y _OUT_DQ (0.15)					
0.25	VIS-MCO_TM	VIS-MCO_TM	VIS-ITMX_IP	PEM-IXV_GND	PEM-IXV_GND					
	OPLEV_PIT	_OPLEV_YAW	DAMP_Y_IN1	_TR120QTEST	_TR120Q_Y					
	OUT_DQ	_OUT_DQ	DQ	_Y_OUT_DQ	_OUT_DQ					
	(0.62)	(0.51)	(0.49)	(0.44)	(0.43)					
0.38	VIS-MCO_TM	VIS-MCO_TM	PEM-IXV_GND	VIS-ITMX_IP	PEM-IXV_GND					
	OPLEV_PIT	_OPLEV_YAW	_TR120QTEST	DAMP_Y_IN1	_TR120Q_Y					
	OUT_DQ	_OUT_DQ	_Y_OUT_DQ	DQ	_OUT_DQ					
	(0.69)	(0.61)	(0.56)	(0.56)	(0.55)					
0.50	PEM-IXV_GND	PEM-IXV_GND	PEM-IMC_GND	PEM-IMC_GND	VIS-MCO_TM					
	TR1200TEST	_TR1200_Y	_TR120C_MC1	_TR120C_MCE	OPLEV_PIT					
	Y_OUT_DQ	_OUT_DO	_Y_OUT_DQ	_Y_OUT_DQ	OUT_DO					
	(0.69)	(0.68)	(0.68)	(0.66)	(0.63)					
0.62	PEM IXV. GND	PEM_IXV_GND	PEM_IMC_GND	PEM IMC_GND	VIS-MCO_TM					
	TR1200TEST	TR 1200_Y	TR120C_MC1	_TR120C_MCE	OPLEV_PIT					
	Y OUT DO	OUT_DO	Y_0LT_DD	_Y_OUT_DO	OUT_DO					
	(0.77)	(0.77)	(0.76)	(0.76)	(0.54)					

Spectral Line identification (Fscan)

Coherence search (Bruco)

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

KAGRA original tools

by T. Yamamoto

Data-exchange tests with low latency

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Low Latency h(t) transfer KAGRA tunnel —> the surface —> Kashiwa server : 3 sec LHO/LLO —> Caltech —> Kashiwa : 6-14 sec --> Caltech --> Kashiwa : 10-16 sec

(time includes reconstruction)

LV data distribution to Tier-x level will be monitored by Tier-site managers.

Test runs

June 8, X-arm for 5.5 hrs/6 hrs

We conducted the 1st engineering run at June 8th 12:00-18:00(JST)

- X arm lock with IR main laser
- Total duty cycle of the science mode was **94.8%**
- Transient noise and narrow band frequency(line) noise identification
- Coherent channel search between main channel and PEM/IFO control signals/ instrument signals

June 19, DRMI first locked

- only PR, SR parts were tested.
- locked in 10 sec, locked for a couple of mins
- We began searching the best parameters

- MICH error signal
- PRCL error signal
- SRCL error signal

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; July 10, 2019 @ GR22/Amaldi13 at Valencia, Spain

Interferometer w cryogenic, finally...

Status of KAGRA: Summary

- ◆ KAGRA finished all the installations by April 2019, and under extensive commissioning.
- ◆ June 8, X-arm locked (d.c. 94.8% of 6 hrs)
- ◆ June 19, PR and SR locked in 10 sec, locked for several mins.
- **◆ KAGRA plans to join O3 from the end of 2019.**

- KAGRA-LV data exchange started.
- KAGRA-LV data analysis groups meetings has

 \blacklozenge KAGRA plans to join O4 from the beginning.

July 10, 2019 @ GR22/Amaldi 13 at Valencia, Spain

