独立成分分析を用いた重力波抽出方法の提案

Gravitational-wave Extraction using Independent Component Analysis

目的

- テンプレートを用いずに、重力波の波形を取り出す新たな手法を提案する
 - ■一般相対性理論の検証
 - ■未知の重力波の発見

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

arXiv:2503.14179

下村りか,田部優一,真貝寿明 (大阪工大情報科学部) Rika Shimomura, Yuuichi Tabe, Hisaaki Shinkai (OIT)

結論

- Injection testにより,干渉計の実ノイズでも,SNR>15 で有効
- O3までの実イベント10例以上に応用
 - 波形を抽出でき、Mc(1+z)も GWTC3と無矛盾
 - 干渉計への重力波到着時刻の誤差を小さくできる例あり

独立成分分析

探すべき成分が統計的に独立であり、非ガウス的である場合に、多変量のデータから隠された因子や成分を見つけ出す手法

実際には 尖度は, 外れ値に引きづられることが多いので, g関数法と呼ばれる $w_p = E[zg(w_p^T z)] - E[g'(w_p^T z)]w_p$ where $g(y) = \tanh y$. とする手法を用いる(FastICA法の1つ).

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

Independent Component Analysis (ICA)

統計的に独立 非ガウス的 な信号を取り出す
ハ・ ガウシアンから離れている信号を取り出す
ハ・ ガウシアンから離れている信号を探す
ホワイトニングしたデータ列
$$z(t)$$
 にして、
 $s_i(t) = \boldsymbol{w}_i^T \boldsymbol{V} \boldsymbol{x}(t) \equiv \boldsymbol{w}_i^T \boldsymbol{z}(t)$
尖度が最大となるような変換行列 W を求める
kurt($\boldsymbol{w}^T \boldsymbol{z}$) = $E[(\boldsymbol{w}^T \boldsymbol{z})^4] - 3\{E[(\boldsymbol{w}^T \boldsymbol{z})^2]\}^2$
収束するまで繰り返しながら
koたい!
 $\frac{\partial}{\partial \boldsymbol{w}_i} |\operatorname{kurt}(\boldsymbol{w}_i^T \boldsymbol{z})| = \begin{pmatrix} E[4(\boldsymbol{w}_i^T \boldsymbol{z})^3 \boldsymbol{z}_1] \\ E[4(\boldsymbol{w}_i^T \boldsymbol{z})^3 \boldsymbol{z}_2] \\ \vdots \end{pmatrix} -12||\boldsymbol{w}_i||^2 \end{pmatrix}$

独立成分分析の重力波データ解析への応用

これまでの重力波に関連するreferences

[1] R. De Rosa, et al., CQG 29, 215008 (2012) Matched-Filter解析の前処理にICAを用いることで、重力波の検出効率を 高められる可能性を干渉計のmock dataで示す

[2] S. Morisaki, J. Yokoyama, K. Eda, Y. Itoh, J.Comp. Phys. 300, 275 (2016) 非ガウス性ノイズ除去への応用可能性を指摘

[3] KAGRA Collaboration, CQG 40, 085015 (2023) iKAGRA観測時(2020)の実データを用いて,地震計などの物理環境チャン ネル信号を例に、ICAによるノイズ除去の実例を示す

▶実際の干渉計のデータに対して重力波の抽出を試みた研究はない

論点

実際の干渉計データから重力波を取り出すことができるのか どこまでのSNRの波を取り出せるのか

特別な工夫 干渉計データの時刻をずらしながら,最もよく信号が抽出できる状況を探す

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

3

テスト計算1: 2つの異なるガウス分布 + inspiral-wave injection

Model 1 : $\begin{cases} x_1(t) = n_{1G}(t) + h_{insp}(t; t_c, M_c), \\ x_2(t) = n_{2G}(t) + h_{insp}(t; t_c, M_c). \end{cases}$

振幅が小さいと,ガウスノイズからの分離も困難

injection波の振幅 = $5 \times J \tau$

物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」下村りか,田部優一,真貝寿明(大阪工大) 2025/3/21

- x1

- x2

- s1

- s2

テスト計算2: Hanford/Livingston実ノイズ+三角関数injection

Model 2 :
$$\begin{cases} x_1(t) = n_{\rm H}(t) + \sin(2\pi f t), \\ x_2(t) = n_{\rm L}(t) + \sin(2\pi f t), \end{cases}$$

GW150914前後のHanford/Livingstonのデータに, f=213Hzの波をinject

▶ SNR >10 なら分離したものが認識できる

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」下村りか,田部優一,真貝寿明(大阪工大)

テスト計算3: Hanford/Livingston実ノイズ + inspiral-wave injection

Model 3 :
$$\begin{cases} s_1(t) = n_{\rm H}(t) + h_{\rm insp}(t; t_0, M_c), \\ s_2(t) = n_{\rm L}(t) + h_{\rm insp}(t; t_0, M_c). \end{cases}$$

GW150914前後のHanford/Livingstonのデータに, inspiral 波をinject

▶ SNR >15 なら分離したものが認識できる

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

injection波のSNR = 16.8

I a second s

(c3) Output of ICA for (c1).

(c4) Fourier spectrum of (c3).

実データへの応用: GW150914

FIG. 5. The strength of the extracted signal, \mathcal{A} [eq. (10)] as a function of $\Delta t_{\rm HL}$ for the case of GW150914. Five trials of different initial weight matrix are plotted at each $\Delta t_{\rm HL}$. We see the maximum is at $\Delta t_{\rm HL} = -7.32^{+0.15}_{-0.15}$ ms. Note that LIGO-Virgo paper [1] shows $\Delta t_{\rm HL} = 6.9^{+0.5}_{-0.4}$ ms.

$$\Delta t_{\rm HL} = -6.9^{+0.5}_{-0.4} \text{ ms}.$$

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

実データへの応用: O1-O3のBBH イベント

(a1) Input signals of GW190521_074359 with $\Delta t_{\rm HL} =$ -6.35 ms. The data x1 and x2 are of Hanford and Livingston data, respectively.

(b1) Input signals of GW191109_010717 with $\Delta t_{\rm HI}$ = +3.17 ms. The data x1 and x2 are of Hanford and Livingston data, respectively.

(c1) Input signals of GW191204_171526 with $\Delta t_{\rm HI}$ -2.44 ms. The data x1 and x2 are of Hanford and Livingston data, respectively.

(d1) Input signals of GW191216_213338 with $\Delta t_{\rm HV} =$ -11.0 ms. The data x1 and x2 are of Hanford and Virgo data, respectively.

(e1) Input signals of GW200112_155838 with $\Delta t_{\rm LV}$ = -23.2 ms. The data x1 and x2 are of Livingston and Virgo data, respectively.

(a2) Output of ICA for GW190521_074359.

(b2) Output of ICA for GW191109_010717.

(e2) Output of ICA for GW200112_155838.

FIG. 7. Input and Output data of ICA analysis.

(f1) Input signals of GW170814 with $\Delta t_{\rm HL}$ = $-8.06~{\rm ms}$ and $\Delta t_{\rm HV} = +0.98$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

(g1) Input signals of GW190412 with $\Delta t_{\rm HL} = -3.91~{\rm ms}$ and $\Delta t_{\rm HV} = -13.92$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

(h1) Input signals of GW190521 with $\Delta t_{\rm HL} = +2.93$ ms and $\Delta t_{\rm HV} = -25.15$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

(i1) Input signals of GW190814 with $\Delta t_{\rm HL} = +2.20$ ms and $\Delta t_{\rm HV} = +21.24$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

+3.42 ms and $\Delta t_{\rm HV} = -18.31$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

FIG. 7. Input and Output data of ICA analysis (cont.)

2025/3/21 物理学会 @ オンライン

理科年表に掲載されているSNRの高いものすべて

hy hy j hy and	Ŵ	x1	
	1.0	(a)]

2.5	NMANA PROVIDENT	n v. alvi. and had hits	, <mark>hainda wa matika kawa kawii k</mark>	all () (<mark>de sels sels sels sels selles)</mark> 1997 : San		= s1
-2.5	0.0	0.2	0.4	0.6	0.8	1.0[s]
2.5 0.0 _2.5			whither when	p. http:////http://	NUMMAN ANNO AN	- s2
	0.0	0.2	0.4	0.6	0.8	1.0[s]
2.5 0.0 –2.5	AMMAN AND AND AND AND AND AND AND AND AND A	</td <td>₩₩₩₩₩₩₩</td> <td>ladan an the state of the state</td> <td>ndagenterer fillerer frankrigenski</td> <td>- s3</td>	₩₩₩₩₩₩₩	ladan an the state of the state	ndagenterer fillerer frankrigenski	- s3
	0.0	0.2	0.4	0.6	0.8	1.0[s]

(g2) Output of ICA for GW190412.

harliger of high head work of the Article and the state of the ŗſĦĸĹĸĹĸŗĹŀĸĸĹŀĸĹĸŧĸŧĸĸĸĸĸĸĸĹŧĸŧ₩ŧĸĸĸĸĸŧĸĸĸĸŧŀĸĸĿŀŧĸĸŧŀĸĸĸŶĸĸĸŔĸĸĸĊĹĸŔŀŔĸţĊĦĸĸĊĦĸĸĊĬĬĹĿŢĨġ htermathala have been and head all all the second second and a second second second second second second second

(i2) Output of ICA for GW190814.

11

(k1) Input signals of GW200224_222234 with $\Delta t_{\rm HL}$ = -3.66 ms and $\Delta t_{\rm HV} = -9.28$ ms. The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

(11) Input signals of GW200311_115853 with $\Delta t_{\rm HL}$ = $-3.66 \text{ ms and } \Delta t_{\text{HV}} = -27.10 \text{ ms.}$ The data x1, x2, and x3 are of Hanford, Livingston, and Virgo, respectively.

FIG. 7. Input and Output data of ICA analysis (cont.)

(k2) Output of ICA for GW200224_222234.

12

実データへの応用: O1-O3のBBH イベント

chirp-mass and red-shift.

event	obs	SNR	$\Delta t_{\rm HL} \ ({\rm ms})$) $\Delta t_{ m HV}~(m ms)$	$\Delta t_{\rm LV} \ ({\rm ms})$	$ \mathcal{A} $	$R/10^{-12}$	ref.
GW150914	HL	26.0	$-7.32\pm^{1.5}_{1.5}$	_	—	4.19	5.88	Fig.4
$GW190521_074359$	HL	32.8	$-6.35\pm^{0.98}_{0.49}$	· -	—	1.83	10.3	Fig.7(a)
$GW191109_{-}010717$	HL	47.5	$3.17\pm^{0.98}_{0.73}$	_	—	3.40	18.4	Fig.7(b)
$GW191204_{-}171526$	HL	8.55	$-2.44\pm^{0.49}_{0.73}$	—	—	2.07	3.27	Fig.7(c)
$GW191216_{-}213338$	HV	8.33	—	$-11.0\pm^{1.5}_{0.73}$	_	3.08	2.09	Fig.7(d)
$GW200112_{-}155838$	LV	27.4	_	_	$-23.2\pm^{0.49}_{0.24}$	2.43	10.5	Fig.7(e)
GW170814	HLV	24.1	$-8.06\pm^{0.49}_{0.98}$	$0.98\pm^{2.4}_{0.24}$	_	3.54	5.07	Fig.7(f)
GW190412	HLV	13.3	$-3.91\pm^{0.24}_{0.24}$	$-13.92\pm^{0.98}_{0.49}$	—	2.21	4.40	Fig.7(g)
GW190521	HLV	63.3	$2.93\pm^{0.49}_{1.2}$	$-25.15\pm^{0.49}_{1.7}$	—	2.85	31.8	Fig.7(h)
GW190814	HLV	6.11	$2.20\pm^{0.49}_{0.24}$	$21.24\pm^{0.73}_{0.24}$	—	2.00	1.65	Fig.7(i)
$GW200129_{-}065458$	HLV	27.2	$3.42\pm^{0.98}_{0.24}$	$-18.31\pm^{0.24}_{0.24}$	—	3.96	11.3	Fig.7(j)
$GW200224_222234$	HLV	31.1	$-3.66\pm^{2.7}_{0.24}$	$-9.28\pm^{0.24}_{0.98}$	—	3.28	13.4	Fig.7(k)
$GW200311_{-}115853$	HLV	26.6	$-3.66\pm^{0.73}_{1.2}$	$-27.10\pm^{2.2}_{2.2}$	—	3.17	4.34	Fig.7(l)
			ICAがGW信号を他と分離したときの 抽出されたGW信号			れたGW信号と		
				背景ノイズとの比 あまり変わらない 🛛 🛛 重ねた時の残差 S				

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

理科年表に掲載されているSNRの高いものすべて

TABLE III. Results of the wave extractions by ICA for large SNR events in O1-O3. The column obs shows which detector (Hanford/Livingston/Virgo) observed. SNR is the network signal-to-noise ratio (centered value) which is announced in GWOSC (https://gwosc.org). $\Delta t_{\rm HL}$ is the time shift between Hanford data and Livingston data, $t_{\rm L} - t_{\rm H}$, in ms when ICA shows the best separation of the signal. A is the ratio of extracted signal to the other noise(s) evaluated by eq. (10). \mathcal{R} is the residuals of the extracted waveform and estimated inspiral waveform, (11), between $[t_c - 0.15 \text{ ms}, t_c]$. See table IV for comparisons of

実データへの応用: O1-O3のBBH イベント

TABLE IV. Comparisons of chirp mass, M_c^{source} , shown in GWOSC and the one obtained by ICA, M_c^{obs} from the best fit inspiral-wave model. The difference can be regard as redshift factor $(1 + z_{ICA})$. The redshift factor in GWOSC, z, is also shown.

			GWOSC		ICA		
event	obs	SNR	$M_c^{\rm source}/M_{\odot}$	z	$M_c^{ m obs}/M_{\odot}$	$z_{ m ICA}$	ref.
GW150914	HL	26.0	$28.6^{+1.7}_{-1.5}$	$0.09\substack{+0.03\\-0.03}$	30.8	$0.077\substack{+0.06\\-0.06}$	Fig.4
$GW190521_074359$	HL	25.9	$32.8^{+3.2}_{-2.8}$	$0.21\substack{+0.10 \\ -0.10}$	36.4	$0.11\substack{+0.10 \\ -0.10}$	Fig.7(a)
$GW191109_010717$	HL	17.3	$47.5^{+9.6}_{-7.5}$	$0.25\substack{+0.18 \\ -0.12}$	53.7	$0.13\substack{+0.22\\-0.19}$	Fig.7(b)
$GW191204_{-}171526$	HL	17.5	$8.56\substack{+0.41\\-0.28}$	$0.34\substack{+0.25\\-0.18}$	11.1	$0.29\substack{+0.04\\-0.06}$	Fig.7(c)
$GW191216_{-}213338$	HV	18.6	$8.33^{+0.22}_{-0.19}$	$0.07\substack{+0.02\\-0.03}$	9.00	$0.08\substack{+0.03\\-0.03}$	Fig.7(d)
$GW200112_{-155838}$	LV	19.8	$27.4^{+2.6}_{-2.1}$	$0.24\substack{+0.07\\-0.08}$	32.7	$0.19\substack{+0.10 \\ -0.10}$	Fig.7(e)
GW170814	HLV	17.7	$24.1^{+1.4}_{-1.1}$	$0.12\substack{+0.03 \\ -0.04}$	26.0	$0.08\substack{+0.05\\-0.06}$	Fig.7(f)
GW190412	HLV	19.8	$13.3\substack{+0.5\\-0.5}$	$0.15\substack{+0.04\\-0.04}$	14.8	$0.11\substack{+0.04\\-0.04}$	Fig.7(g)
GW190521	HLV	14.3	$63.3^{+19.6}_{-14.6}$	$0.56\substack{+0.36\\-0.27}$	81.7	$0.29\substack{+0.39 \\ -0.30}$	Fig.7(h)
GW190814	HLV	25.3	$6.11\substack{+0.06 \\ -0.05}$	$0.05\substack{+0.01\\-0.01}$	6.35	$0.04\substack{+0.01\\-0.01}$	Fig.7(i)
$GW200129_{-}065458$	HLV	26.8	$27.2^{+2.1}_{-2.3}$	$0.18\substack{+0.05\\-0.07}$	30.6	$0.13\substack{+0.10 \\ -0.08}$	Fig.7(j)
$GW200224_{-}222234$	HLV	20.0	$31.1^{+3.3}_{-2.7}$	$0.32\substack{+0.08\\-0.11}$	37.6	$0.21\substack{+0.11\-0.12}$	Fig.7(k)
$GW200311_115853$	HLV	17.8	$26.6^{+2.4}_{-2.0}$	$0.23\substack{+0.05 \\ -0.07}$	31.0	$0.17\substack{+0.09 \\ -0.10}$	Fig.7(l)

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」下村りか,田部優一,真貝寿明(大阪工大)

理科年表に掲載されているSNRの高いものすべて

抽出されたGW信号に合致するインスパイラル波形の Mc (obs)を算出 LVK論文の Mc (source) と比較して (1+z)を算出

すべてのイベントで無矛盾

独立成分分析を用いた重力波抽出方法の提案

Gravitational-wave Extraction using Independent Component Analysis

まとめ

- テンプレートを用いずに、重力波の波形を取り出す新たな手法を提案した。
- Injection testにより、干渉計の実ノイズでも、SNR>15 で有効
- 03までの実イベント12例に応用
 - 波形を抽出でき、Mc(1+z)も GWTC3と無矛盾
 - すべてのイベントでGW波形を無矛盾に抽出できたといえる
 - 干渉計への重力波到着時刻の誤差を小さくできる例あり
 - sky localizationの精度向上へ使える

先の2023年3月の物理学会で報告したAR(自己回帰モデル)もテンプレートなしで波形抽出できた. コメント いろいろな重力波抽出方法の開発ができつつあり、比較検証ができるようになる。 サイエンスが確かになって,楽しい.

科研費に謝辞 This work was supported by JSPS KAKENHI Grants No. 24K07029 and 18K03630.

2025/3/21 物理学会 @ オンライン 「独立成分分析を用いた重力波抽出方法の提案」 下村りか,田部優一,真貝寿明(大阪工大)

<u>arXiv:2503.14179</u>

下村りか,田部優一,真貝寿明(大阪工大情報科学部) Rika Shimomura, Yuuichi Tabe, Hisaaki Shinkai (OIT)

利点 ● 計算も軽い、Laptop PCで可能(3干渉計なら数時間)

- テンプレート不要なので、例えば、
 - ■一般相対性理論の検証

■未知の重力波の発見

- ICAで分離される結果は,振幅の大きさ情報をもたない.
- ICAで分離される結果は、位相反転している可能性がある。

