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Dual null formulation (and its Quasi-Spherical version)

This note is for actual coding of the double null formulation by Hayward [1, 2], expecially its
quasi-spherical approximated version [3, 4].
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1 Dual-null formulation (without conformal scaling)

1.1 metric

ds? = hy(de' + plde™ + mideT)(da? + pPda + midaT) — 2 datda”

(1)

= hijdajid:z:j + 2pydatda™t + 2mydatde™ + plpld:L‘+2 + mlmld:r:_2 + 2(plml - e_f)dzv+d:nf2)

In the matrix form,

p? —e~ +pm!  p;
gab = | —e~ +pim! m? m;

Di m; hij
and )
0 —ef efm?
gab = —ef 0 efpi
efm?  efp? W9 —ef (pim? + pim?)

1.2 Lie derivatives

We use Lie derivatives Ly along the null normal vectors
li =us —se =e Tg7'(n¥),
that is

l+a = u(-ll,- _pa = (1707070) - (0707p17p2) = (1707 _pla _p2)
- = u* —m®=(0,1,0,0) — (0,0,m*, m?) = (0,1, —m!, —m?).

The Lie derivative is defined in general as

LeS = €90,8,
LVE = €OVVH — VOVLEH = €20, VH — VOO,E",
£eUp = EVaUy+ UaVu®, = 06U, + UaO,E”,

LT = €OV — TVl — THOVGE” = EX0,TH — T 0o — TH0,Y,
LW = VoW + Wap Vil + Wia V" = E%0a Wy + Wap0uE® + Wiady €

therefore for scalar, vector and tensor quantities,

LS = 1,%9,8=0,+8 —p*o;S

L_S = 1.99,5=08,-5—mFa,s
LV = 0,V —pro Ve — VFopp®
LV* = 0,-V*—m"o,V* — VFom*
Lih;j = 0u+hij — pkakhij + th(z‘aj)pk
L,hij = 830— hij — mkékhij + 2hk(,-8j)mk

3)



1.3 Geometrical quantities

From the original expressions The fields (01,04, v1,w) encode the extrinsic curvature of the
dual-null foliation. These extrinsic fields are unique up to duality + — F and diffeomorphisms
which relabel the null hypersurfaces, i.e. dz* — e*+dx® for functions Ay (z7F).

0+ = xLyxl (9a)
oy = LLih—04h (9b)
vy = Lif (9c)
w o= Lefh(io 1) (94)

where * is the Hodge operator of hy,. The functions 64 are the expansions, the traceless bilinear
forms o4 are the shears, the 1-form w is the twist, measuring the lack of integrability of the normal
space, and the functions v4 are the inaffinities, measuring the failure of the null normals to be
affine.

HS notes For more friendly expressions, these are

1
0 = —— det hy;; 10
+ Jdethy, Ve (10a)

Otay = hShiLiheg — O1hgy (10b)
V4 = Lif (100)
wo = selhgpllo, 4]’ = Lelhy (16 Vely 1S VID)

= Lelhap(1€0:15 —190.0%) (10d)

More concrete,

1
0, = ————[0,+1/det hi; — p"O)\/det hyj 11
+ Toih | yfdet iy — pFog fdet by (112)
1 [ kg /

orab = hGhiLiheq — 04 hap
= h5hi[0p+ hea — PP Okhca + 2k 0a)p"] — O hay (11c)
O ay = hShSL _heg—0_ha
= WS [0p-Tea — MFOkheq + 2hy(Oqym™] — 0_hap (11d)
vi = Lif=0.f—p Ocf (11e)
v. = L_f=08,f—mFo.f (11f)
wo = 3 hap(9,-1% —mFORIE — 0,18 + pFORIL) (11g)
1.4 Full version
1.4.1 Full set of Einstein equation 1
Inverting the definitions of the momentum fields yields the propagation equations
L (Lys- —Losy) = 2 hHw)+[s_,s4] (12a)
1Lih = 0O+h+o4+ (12b)
Lif = vy (12¢)



The full set of Einstein equations is obtained with the below.

1.4.2 Full set of Einstein equation 2

From Appendix B in [1] (with the current convention):

L+9+
L6
L+ v_

J—I“ro-fab

J_L+wa
and

L6
L 6,

L,V+

J—L*UJrab

1L _w,

—V+9+ - %63 - %h“chbda+aba+cd (13&)
-ww_+afQ%R+MM%%—%apg+%a¢mf+%pg—pwwymm
—%#L+%W%Wmmwﬂﬂ+€fC%R+h“@%%—iDJDJ—wﬂ%ﬂ$@
%(9+0‘,ab - 970-+ab) + tho-Jrc(ao-*b)d

+2e~f (wawb — 3DoDyf + 1DafDyf + w@Dy) f — D(awb))

—e 1 (wewq — §DeDaf + §Def Daf +weDaf = Dewa) hay (13d)
—9+wa + %(DV_;,_ — D0+ — 9+Df) + %thDcU—i-ab (136)
—v_0_ — %9% - %huchbda_abO'_cd (14&)

~040- + =T (=3R + h®(wowy — $DaDuf + $Daf Dof — waDyf + Dawy) ) (14b)
~3040_ + Lhehbo o cq+ e (=3R4 heP(Bwawy — §Daf Dyf +wa Dy flilie)
—5(040_ap — O—0rap) + B0 (04 b)a

+2¢~f (wawb — DDy f + 1DafDyf — wuDyyf + D(awb))

—e Tl (wcwd — ADDyf + 1DcfDyf — weDaf + Dcwd) hap (14d)

—0_w, — $(Dv_ —DO_ —0_Df) — h*D.o_q (14e)

where D is the covariant derivative of hgy.
There is no Lyoyap, L_o_gp, Lyvy, and L_v_.
In spherical symmetry, (04,w, D) vanish, while (04, vy, Dy) generally do not.

1.4.3 HS notes: friendly expressions

For the equations in §1.4.1

w@gw—Lwﬂ::hﬂ@mfﬂﬂmﬁ—ﬁmﬁ—@4ﬁmﬁmﬁ+ﬁmw)
= hy (8x+mb — 8x_pb) = 2¢ T h%wy, + mCup® — p°Oem® (15a)
hehfLyheg = hShE(0p+heg — PP Okhed + 2hyOayp") = O1hap + 0tap (15b)
hehfL_heg = hGhE(0p-heg — M Okheq + 2hyDaym™) = 0_hay + 0_qp (15¢)
Lif = Opf—pohf=vy (15d)
L_f = 0y f—mFopf=v_ (15€)



1.5 Quasi-spherical version

1.5.1 Full set of Einstein equation 1

Inverting the definitions of the momentum fields yields the propagation equations

L(Lys- —Losy) = 2 hHw)+[s_,s4]

1Lih = 6OLh+ o4
Lif = v

(16a)
(16b)
(16¢)

The full set of Einstein equations is obtained with the below (17a)-(17¢). There is no Lo g,

L_o_g, Lyvy,and L_v_.

1.5.2 Full set of Einstein equation 2 (quasi-spherical approximation)

After the truncations for quasi-spherical approximations,

Li6y
L6+
Livs
1Lio+
1Liw

= —vyby — %0:2,[

= —0,0_—e'r2

= —%9+0_ —efp2

= +3(040-—0_0y)

= —biw=3(Dvy — Dby —0.Df)

(17a)
(17b)
(17¢)
(174d)
(17e)

where D is the covariant derivative of hg,. In spherical symmetry, (o4,w, D) vanish, while

(0+,vy, Dy) generally do not.

1.5.3 HS notes: friendly expressions

For the equations in §1.5.2

Li0y =
L0,
L_0_
L6+
Lo =
L 6, =
Livy =
Lyv_ =
L_vy =
RERI L 0+ea

R Liw, =

0+04+ — si@kei = —vi64 — %Hi that is
0404 — pFoRly = —vi0y — 162
0_0_ —mFoo_ = —v_6_ — 162

010+ — sh00- = —0,0_ —eFr™?  thatis

04 0_ —propo_ = —0,0_ —e 12

O_0, —mFoph, = —0,0_ —eTr2

drve — st opvy = —1040_ —e T2 that is
Oyv_ —pror_ = —%9+0_ — e fr2

O_vy —mFopvy = —%0+0_ — e fpr2

RERH Dy O ed — 85 O0KOFca + 20¢k(68d)3i)
+3(040_qp — 001 ap)

hZ(@iwb — Slj:ak:wb + wkabs’j:)

04wy £ 5(Davs — Doby — 01Dy f)
—0iw, + %(aayi — 0gb+ — Hiaaf)

(18a)
(18b)

(18¢)
(18d)

(18e)
(18f)



2 Dual-null formulation (with conformal scaling)

2.1 Introducing the conformal decomposition

It is also possible to integrate all the way from S~ to 3T by a conformal transformation.
We take the conformal decomposition of

hap = m2kqp, (19)

such that
Dix1=0 (D:t det ko, = 0) (20)

where % is the Hodge operator of k, satisfying x1 = %r2,

The shear equations, composed into a second-order equation for k, become

Akg, =0 (21)

where A is the quasi-spherical wave operator:

A¢ = =2 (L Ly +2r ' LyrL o)
= e (L+L,¢> + L Li¢p+2r ' LyrL ¢+ 2T_1LJ“L+¢) (22)
In practice, one may use the conformal factor
Q=r1 (23)
and the rescaled expansions and shears

9y = rly (24a)
G = 1oy (24b)

which are finite and generally non-zero at 3.

2.2 Full version

Not available here.

2.3 Quasi-spherical version

Of the dynamical fields and operators introduced above, (si,04,w, D) vanish in spherical sym-
metry, while (h, f,0+,v1, Ay) generally do not. The quasi-spherical approximation consists of
linearizing in (s4,04,w, D), i.e. setting to zero any second-order terms in these quantities. This
yields a greatly simplified truncation [3] of the full field equations, the first-order dual-null form of
the vacuum Einstein system|2]. In particular, the truncated equations decouple into a three-level
hierarchy, the last level being irrelevant to determining the gravitational waveforms. The remaining
equations are the quasi-spherical equations

A:I:Q = _%Qlﬁﬂ:v (25)
Asf = vg, (26)
Aiﬁi = _V:tﬁ:t_iQ‘|§:tH2a (27)
————
2nd order
Ade = —Q(F39.0- +e ), (28)
Arve = —QPF040- + e —3ep,o)), (29)
d ord
2nd order



and the linearized equations

Ark = Q¢ (30)
Qo ks e (31)
————

1st but missing in below

A:|:§:|:

These are all ordinary differential equations; no transverse D derivatives occur. Thus we have an
effectively two-dimensional system to be integrated independently at each angle of the sphere. The
“2nd order” terms are pointed out in [5].

The initial-data formulation is based on a spatial surface S orthogonal to [+ and the null
hypersurfaces ¥4 generated from S by [, assumed future-pointing. The initial data for the above
equations are (9, f,k,91) on S and (¢t,v4) on X3, We will take [ and [— to be outgoing and
ingoing respectively.

For the quasi-spherical approximation to be valid near 3%, a modification of the integration
scheme is suggested, such that initial data is given at spatial infinity i rather than 3. Specifically,
one may fix (Q, f,9+,k) = (0,0, £v2, €) at i?, where € = d¥ ® d¥ + sin? ¥dp ® dyp is the standard
metric of a unit sphere. The first step would then be to integrate backwards along 3~ as far as %,
fixing v; = 0 on 4. The remaining coordinate data is given by v_ on the ingoing null hypersurface
Y., which is left free so that one may adapt the foliation of ¥_ to the surfaces which are most
spherical.

2.4 HS notes
For scalar and tensor quantities:
AyS = 1L3S=1(9+8 —s503,8) = 048 — shopS
A Wy = LLyWij = RIS LWy, = hh2 (0 Wy, — s.0,Wap + 2Wi (00 55

J

Therefore we can write the evolution equations as the following;:

ALQ = 0.0-550,0=-10%,  thatis

0+Q = pFopy — 1029, (32a)
0-Q=m"9,Q - 10%9_ (32b)
Arf = Oif—shopf=ve  thatis

O f = p"Okf + vy (32¢)

O_f =mPopf+v_ (32d)
Ay = 0:04 —shOp0s = —vids  thatis

0494 = prop, — vy (32e)

D9 =mPop0_ —v 9 (32f)
Ay = 04y —shopdy —Q(A0.9_ +e7f)  thatis

019 = prOopd - — Q3940 +e77) (32g)

00 =mFopdy — QAII_ + e ) (32h)
Ayvy = Opvg —showe — Q*(3949_ +e7 /) thatis

Oyv_ = pFogr_ — Q* (A9, 0_ + e ) (32i)

O_vy = mPOpvy — Q2 (2949 + e 7) (32)



Askij = h{hS(0skay — s50ckap + 2kp(aOpyst) = Qceg;  that is

h§R50. 4 kap = hEhD(p" Okay — 2k Op)p") + Qepij (32k)

W R0 _kap = W RO (m" Ok, — 2k Opym*) + Qe_i; (321)
Ascrij = hihb(0xsrap — 50kSsab + 25 4(a0h)sh) = —3QWgcry;  that is

W RS0 c_ap = WD (p" Oc_ap — 26— (a0 ") — 3 _cpy; (32m)

h?h?éL@rab = h?hg(mk8k§+ab — 2§+k(a0b)mk) — %Qq%r@ij (32n)

3 Numerical Scheme for Quasi-Spherical approx. space-time
The variables are (2, f,94+,9_, v, v_, kap, S+abs S—ab)
1. Prepare initial data on X

e Set metric components (f, kqp) on X.

e Set extrinsic curvature components (Y1) on X.
2. Prepare data on X_

e Assume m® =0 on X_
e Set (¢_,v_) on X_.
i Integrate (Qa f7 19:‘:7 Vg, kaba g—‘rab) by A_ equations.

0_Q =mFoQ — 10%_ (33a)
O_f =m onf +v_ (33b)
D9 =mFop0_ —v_9_ (33c)
O_0s = mPopdy — Q3949 + e ) (33d)
vy = mFopvy — Q2(A049_ + ) (33¢)
heh2O_kqy = hRE (M Okay — 2k (uOpymF) + Qc_yj (33f)
W RS0 _cyap = WD (M O rap — 264 (0 Opym*) — 301y (33g)
3. Ome step to go in U (from 0 to Az first time)
e Assume p® =0in U.
e Set (¢4,v4) on Xy (Azx™).
e Integrate (Q, f,9+,v_, kap, S—ap) by A equations.
9.0 =pro — 1%, (34a)
Oy f = propf + vy (34b)
040, = prPopdy — vy (34c)
04— = pFop_ — QA9 9_ + e ) (34d)
Opv_ = propr_ — Q* (A9 9_ +e77) (34e)
W B304 kap = h¢hD(p" Oy — 2k (o Opp®) + Qorij (34f)
h¢h50 b = hih3 (" Oks—ab — 26— 1(@O)p") — 3 ¢4 (34g)



e Note that we do not integrate v, and ¢y, that is we do not have them except on 27 = 0
surface and on the ¥ surface. Therefore we have to use vy (z7 = 0) and ¢; (z7 = 0) in
the above RHSs.

4. Integrate along [~ direction

o Assume m®=01in U.
e Set (¢4,v4) on Xy (Azx™).

e Integrate (v4,<51qp) by A_ equations.

O_vy = mFopvy — Q2(%19+19_ + e~ 1) (35a)
h?hga_q_ab = h?h?(mkak@,_ab — 2§+k(a8b)mk) — %Qﬁ+§_ij (35b)

where we need interpolate V4,2, f,¢_;; in ODE solver, since they are only given on
the grid points. To get the accurate solution, we have better to integrate these variables

(except ¢_).
0_Q =mFoQ — 10%_ (36a)
O_f =mPopf +v_ (36b)
O_9_ =mPopi_ —v_9_ (36¢)
O_04 = mPopdy — Q3949 + ) (36d)

As for ¢_ and v_, we have to interpolate them from the grid points.

e In order to check the accuracy, we also integrate (k) and compare it with the results
of step 2.
W R0 _kap = h¢hD(m" Ok, — 2k Opym*) + Q_i; (37)

5. check the accuracy

e If bad, then go back to the step 2. Integrate equations using the obtained v (Axz™) and
¢+ (Az™) together with v4(0) and ¢4 (0) with their linear interpolations.

e If good, then fix the values v, (Az™) and ¢ (Axz™) and go to the step 2 for the integration
from Ax™ to 2AxT.

4 Schwarzschild metric as an example
We are using the metric with the form
ds? = Q 2k;j(da’ + p'de™ + mide™)(d2? + pldat +mIideT) — 2e daTda (38)

Schwarzschild metric is

2
ds? = —(1— 2—m)dt2 +5 erm +72(d6* + sin® 0dg?) (39a)
’r‘ —_ =
2m 2 2 2/ 192 .2 2
= (1 ——)[=dt" + dri] + r°(d8” + sin” 0d¢p~) (39b)
T
- QTm)Qdudv 1 12(d6? + sin? 0dg?) (39¢)



where

2
re =71+ 2mn(— — 1), j:* - —Tm (40)
and
Li—r),  v="(+r) (41)
U= ——=(t —14), = — %)
2 2
Immediately we obtain
Q Pt (42a)
kij = diag(1,sin*6) (42b)
f = —In (1 — 2_m> (42c)
T
m' = p'=0 (42d)
Take 04 = 0y, 0— = 0, then
2 2
0, = i£(1 Y that is
T T
2
9y = £V2(1 — ) (43a)
T
vy = :F\/ig (43b)
10 :
Oty = —0+ (0 sin? 9> that is
1 0
e = =002 (o) (43¢)
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