岩手大学理工学部 2021年度 現代物理学1集中講義(後半) 2022年2月16-19日

相対性理論

アインシュタインはどこまで正しいのか

- 1. 序論
- 2. 特殊相対性理論 時間の進み方は観測者によって異なる E=mc²,原子核反応,星の一生
- 3. 一般相対性理論 時間の進み方は重力によって異なる ブラックホール,重力波,重力波のデータ解析

真貝寿明(しんかい ひさあき) 大阪工業大学 情報科学部 教授 武庫川女子大学 非常勤講師 理化学研究所 客員研究員

干渉計

GPS

http://www.oit.ac.jp/is/shinkai/

references

WILEY SERIES IN COSMOLOGY

Jolien D. E. Creighton, Warren G. Anderson 🛞 WILEY-VCH

Gravitational-Wave Physics and Astronomy

An Introduction to Theory, Experiment and Data Analysis

Tutorials

Each tutorial will lead you step-by-step through some common data analysis tasks. While GWOSC data can be analyzed using libraries in many software languages (C, C++, Matlab, etc.), most of these tutorials use Python. See also the software page for more examples.

See the tutorial setup page for help installing software to run these tutorials.

Tutorials shown here are not used to produce published results. For gravitationalwave software analysis packages that are used to produce LSC and Virgo Collaboration publications, see software page.

https://www.gw-openscience.org/tutorials/

references

 370
 システム/制御/情報, Vol. 62, No. 9, pp. 370–375, 2018

 解 説

 重力波の直接検出とデータ解析

真貝 寿明*

- 般社団法人 システム制御情報学会 The Institute of Systems, Control and Information Engineers

https://www.iscie.or.jp/pub/journal

http://www.oit.ac.jp/is/shinkai/

♦♦♦♦ 解説 ♦♦♦♦ 重力波の観測とデータ解析 日本物理学会誌 Vol. 72, No. 3, 2017 田越秀行 伊藤洋介 端山和大 大阪市立大学大学院理学研究 東京大学大学院理学系研究科 東京大学宇宙線研究所重力波 観測研究施設 附属ビッグバン宇宙国際研究 tagoshi@sci.osaka-cu.ac.jp センター hayama@icrr.u-tokyo.ac.jp yousuke_itoh@resceu.s.utokyo.ac.jp 428 情報処理 Vol.57 No.5 May 2016 特別解説 重力波の初検出と情報処理技術 ーLIGOと KAGRA で活用されている情報処理技術― 東京大学 Kipp Cannon^{*1} 端山和大^{*1} 伊藤洋介^{*1} 高橋弘毅^{*2} *2 長岡技術科学大学

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

Gravitational Wave

- アインシュタインは、電磁波との類推から重力波の存在を予言した。しかし、後に重力波は存在しないかも、という論文を書きかけた。
- 1968年, ウェーバーによる重力波検出は幻とされた.
- •1974年,連星中性子星の発見によって,重力波の存在が間接 的に証明された。
- 100年経った2015年、ブラックホールが連星を形成して合体 することが、重力波によって確認された。

WWW.PHDCOMICS.COM

CREATED BY: UMBERTO CANNELLA, DANIEL WHITESON AND JORGE CHAM SPECIAL THANKS TO AIDAN BROOKS, FLIP TANEDO AND LIGO!

重力=時空のゆがみ

質点が加速度運動 = 重力波発生

大質量の天体が激しく加速度運動 = 観測できる重力波が発生

重力波の波源 (GW sources)

http://gwcenter.icrr.u-tokyo.ac.jp

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

重力波の分類 (GW classification)

	sources	waveform prediction	data analysis	projects/codes
連星合体 CBC compact binary coalescence	binary BHBH/ NSNS/BHNS	SO SO	SO SO	LALInference pyCBC, gstLAL BayesWave
バースト Burst	supernovae	hard	unknown	cWB
連続 CW continuous wave	pulsars, rotating stars	easy	hard	Einstein@Home
ランダム Stochastic	cosmological	model dependent	hard	
未知 Unknown	unknown	unknown	unknown	

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

1. Gravitational Waves

What we can learn from GW? (重力波観測によって解明できること)

Test of GR at strong gravity region. 一般相対性理論は正しいか? 強い重力場で重力理論の検証ができる

Test of BH no-hair theory ブラックホール合体後のふるまいは? no hair になるか. (質量,角運動量,電荷の3物理量のみか?)

Sources of Gamma-ray bursts ガンマ線バースト現象の起源は? 加速メカニズムは?

1. Gravitational Waves

What we can learn from GW? (重力波観測によって解明できること)

Mechanism of Supernovae 超新星爆発のメカニズムは?

ブラックホールと中性子星の質量差?

Equation of State of nuclear matter 中性子星の最大質量は? 高密度物質の状態方程式は?

Origin of heavy elements

重元素の起源? r-processは充分に発生するか? **1. Gravitational Waves**

What we can learn from GW? (重力波観測によって解明できること)

Origin of Supermassive Blackholes 銀河中心の超巨大ブラックホールの起源は? 合体成長か,初期にできていたか?

Cosmological Parameters 宇宙の膨張速度の測定 Stellar formation scenario 星形成モデルの特定

Early Universe before CMB CMB以前の初期宇宙の解明

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

What we can learn from GW? (重力波観測によって解明できること)

重力波観測の現状

O3b (2019/11/1 - 2020/3/27)

After O3b : GWTC3 (2021/11/7 released)

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

ブラックホールの未解決問題:ブラックホールの質量分布

この現状をどう説明する?

連星系のパラメータ. s_1, s_2, n はベクトル量

2つの天体の質量	m_1,m_2
2つの天体の回転角運動量	$\boldsymbol{s}_1, \boldsymbol{s}_2$
連星軌道面の傾斜角	ι
合体時刻と合体時の位相	t_c, φ_c
観測地点からの波源方向	$-\hat{m{n}}$
2つの重力波モードの偏角	ψ
観測地点からの距離	r

http://ligo.org/detections/GW170104.php

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

Moore, Cole, & Berry, CQG 32(2015) 015014

Sensitivity curve with characteristic strain

http://gwplotter.com

(dimensionless)

Figure A1. A plot of characteristic strain against frequency for a variety of detectors and sources.

Moore, Cole, & Berry, CQG 32(2015) 015014

Sensitivity curve with Power Spectral Density

http://gwplotter.com

/sqrt(Hz)

Figure A2. A plot of the square root of PSD against frequency for a variety of detectors and sources.

Sensitivity curve with dimensionless energy density

http://gwplotter.com

Figure A3. A plot of the dimensionless energy density in GWs against frequency for a variety of detectors and sources.

(dimensionless)

Ideal vs Reality (Theory vs Data Analysis)

challenging for data analysis GW data is with noise signal quickly decays (M=60Msun, a=0.75 -> 300Hz, tau = 3 ms)

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

Power spectrum of Noise

Parseval id.
$$\int_{-\infty}^{\infty} [x(t)]^2 dt = \int_{-\infty}^{\infty} [\tilde{x}(f)]^2 df$$

 $\langle x^2 \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} [x(t)]^2 dt = \int_{-\infty}^{\infty} \underbrace{P(f)}_{-T/2} df$

power spectrum density

$$P(f) = \lim_{T \to \infty} \frac{1}{T} \left[\tilde{x}(f) \tilde{x}^*(f) \right]$$

if stationary prob. process Wiener-Khinchin theorem ►

$$P(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-2\pi i f \tau} d\tau$$

$$R_x(\tau) = \langle x(t) \, x(t+\tau) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t+\tau) \, dt$$

$$\langle x^2 \rangle = 2 \int_0^\infty P(f) \, df = \int_0^\infty S_x(f) \, df$$
 if noise is Gaussian
$$S_x(f) = 2 \int_{-\infty}^\infty R_x(\tau) e^{-2\pi i f \tau} \, d\tau = \lim_{\Delta t \to 0} 2\sigma^2 \Delta t$$

Power spectrum of Noise

$$\langle x^2 \rangle = 2 \int_0^\infty P(f) \, df = \int_0^\infty S_x(f) \, df$$
 if noise is Gaussian
$$S_x(f) = 2 \int_{-\infty}^\infty R_x(\tau) e^{-2\pi i f \tau} \, d\tau = \lim_{\Delta t \to 0} 2\sigma^2 \Delta t$$

 $p_x[x(t)] \propto e^{-(x,x)/2}$

2. Basics

Power spectrum of Noise

$$\langle x^2 \rangle = 2 \int_0^\infty P(f) \, df = \int_0^\infty S_x(f) \, df \qquad \text{if noise is Gaussian}$$
$$S_x(f) = 2 \int_{-\infty}^\infty R_x(\tau) e^{-2\pi i f \tau} \, d\tau = \lim_{\Delta t \to 0} 2\sigma^2 \Delta t$$
$$n_x[x(t)] \propto \exp\left[-\frac{1}{2\pi} \sum r_x^2\right] \propto \exp\left[-\int_{-\infty}^\infty \frac{|\tilde{x}(f)|^2}{2\pi} dt\right]$$

$$p_x[x(t)] \propto \exp\left[-\frac{1}{2\sigma^2}\sum_j x_j^2\right] \propto \exp\left[-\int_{-\infty}^{\infty} \frac{|\tilde{x}(f)|^2}{S_x} df\right]$$

$$\begin{aligned} (a,b) &\equiv 4 \ \mathcal{R}e \ \int_0^\infty \frac{\tilde{a}(f) \ \tilde{b}^*(f)}{S(f)} df \\ &= 2 \int_{-\infty}^\infty \frac{\tilde{a}(f) \ \tilde{b}^*(f)}{S(|f|)} df \\ &= \int_{-\infty}^\infty \frac{\tilde{a}(f) \ \tilde{b}^*(f) + \tilde{a}^*(f) \ \tilde{b}(f)}{S(|f|)} df \end{aligned}$$

岩手大集中講義 現代物理学1 (後半) 「相対性理論」 2022/2 真貝寿明 (大阪工業大学)

Matched Filter

帰無仮説
$$\mathcal{H}_{0}$$
: $s(t) = n(t)$
対立仮説 \mathcal{H}_{1} : $s(t) = n(t) + h(t)$
Odds Ratio $O(\mathcal{H}_{1}|s) = \frac{P(\mathcal{H}_{1}|s)}{P(\mathcal{H}_{0}|s)}$
Likelihood
 $\Lambda(\mathbf{B}|\mathbf{A}) = \frac{P(\mathbf{A}|\mathbf{B})}{P(\mathbf{A}|\mathbf{B})}$
 \mathbf{V}

$$\Lambda(\mathcal{H}_{1}|s) = \frac{p(s|\mathcal{H}_{1})}{p(s|\mathcal{H}_{0})}$$
 $p(s|\mathcal{H}_{1}) = p_{n}[s(t) - h(t)] \propto e^{-(s-h,s-h)/2}}{p(s|\mathcal{H}_{0})} = p_{n}[s(t)] \propto e^{-(s,s)/2}$
 $\Lambda(\mathcal{H}_{1}|s) = \frac{e^{-(s-h,s-h)/2}}{e^{-(s,s)/2}} = e^{(s,h)}e^{-(h,h)/2}$
Matched Filter
(signal-noise ratio)
$$(s,h) = 4 \mathcal{R}e \int_{0}^{\infty} \frac{\tilde{s}(f)\tilde{h}^{*}(f)}{S_{n}(f)} df$$

Bayes Theorem

conditional probability

ユーザに合わせた設定

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

徹底攻略

確率統計

真貝寿明 著

少年が嘘つきの場合(事象 A),「オオカミがいる」と言ったとき,オオカミが発見される(事象 B) 確率を 20%,発見できない(事象 B) 確率を 80%とする.少年が嘘つきでない場合(事象 A), 「オオカミがいる」と言ったとき,オオカミが発見される確率を 70%,発見できない確率を 30%と する.事前確率として,少年が嘘つきの可能性を 10%とする.(15 点)

		オオカミ発見 B	発見できない $\overline{\mathbf{B}}$
少年が嘘つき	\mathbf{A}	20~%	80 %
少年が正直者	$\overline{\mathbf{A}}$	70~%	30~%

- (1) 1度目,少年が「オオカミがいる」と言ったが,オオカミは発見されなかった.少年が嘘つ きと考えられる事後確率 P(A|B)を求めよ. 引き続いて2度目,少年が「オオカミがいる」と言ったが,オオカミは発見されなかった. 少年が嘘つきと考えられる事後確率を求めよ.
- (2) 1度目,少年が「オオカミがいる」と言い,オオカミが発見された.少年が嘘つきと考えられる事後確率を求めよ.
- (1) 1度目 22.9%, 2度目 44.2%
 嘘が続いた時の嘘つき確率は右グラフ
 (2) 3.1%

Matched Filter

Parameter Estimation

Likelihood	$\Lambda(\mathcal{H}_1 s) = rac{p(s \mathcal{H}_1)}{p(s \mathcal{H}_0)}$
$s(t) = n(t) + h_{\theta}(t)$ パラメータ θ^i	$\Lambda(\mathcal{H}_{\theta} s) = \frac{p(s \mathcal{H}_{\theta})}{p(s \mathcal{H}_{0})}$
$\log \Lambda(\mathcal{H}_{ heta})$	$ s) = (s, h_{\theta}) - \frac{1}{2}(h_{\theta}, h_{\theta})$
deriv. local max	$(s - h_{\theta}, \frac{\partial}{\partial \theta^{i}} h_{\theta}) \Big _{\theta = \theta_{\max}} = 0$

2つの天体の質量 m_1,m_2 2つの天体の回転角運動量 $oldsymbol{s}_1,oldsymbol{s}_2$ 連星軌道面の傾斜角 ι 合体時刻と合体時の位相 t_c, φ_c 観測地点からの波源方向 $-\hat{m{n}}$ 2つの重力波モードの偏角 ψ 観測地点からの距離 r

連星系のパラメータ. s_1, s_2, n はベクトル量

Fisher matrix

$$\Gamma_{ij} \equiv \overline{v_i v_j} = \overline{(n, \frac{\partial h_{\theta_{\max}}}{\partial \theta^i})(\frac{\partial h_{\theta_{\max}}}{\partial \theta^j}, n)} = (\frac{\partial h_{\theta_{\max}}}{\partial \theta^i}, \frac{\partial h_{\theta_{\max}}}{\partial \theta^j}) \qquad v_i \equiv (n, \frac{\partial h_{\theta_{\max}}}{\partial \theta^i})$$

$$p(\boldsymbol{v}) = \frac{1}{\sqrt{2\pi \det \Gamma}} \exp\left[-\frac{1}{2}V^{ij}v_iv_j\right]$$
$$V^{ij} \equiv (\Gamma^{-1})^{ij}$$

uncertainty

$$(\Delta \theta^i)_{\rm rms} = \sqrt{V^{ii}}$$
 (no summation)

correlation coef.

$$c_{ij} = \frac{\overline{\Delta\theta^i \Delta\theta^j}}{V^{ii} V^{jj}} = \frac{V^{ij}}{\sqrt{V^{ii} V^{jj}}}$$

「相対性理論」 岩手大集中講義 現代物理学1 (後半)

2022/2 真貝寿明(大阪工業大学)

Markov Chain Monte Carlo (MCMC)

LIGO Computing Latencies

Sharon Brunett, 2015/10

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

Introduction to GW data analysis

Horizon distance

LVK, 1304.0670 (2020/1 update)

Horizon distance (Observational range)

		01	O2	O3	O4	05
BNS Range (Mpc)	aLIGO AdV KAGRA	80 - -	100 30 -	110–130 50 8–25	160 - 190 90 - 120 25 - 130	330 150–260 130+
BBH Range (Mpc)	aLIGO AdV KAGRA	740 - -	910 270 -	990 – 1200 500 80 – 260	$\begin{array}{r} 1400 - 1600 \\ 860 - 1100 \\ 260 - 1200 \end{array}$	2500 1300 - 2100 1200+
NSBH Range (Mpc)	aLIGO AdV KAGRA	140 - -	180 50 -	190–240 90 15–45	300 - 330 170 - 220 45 - 290	590 270–480 290+
Burst Range (Mpc) $[E_{\rm GW} = 10^{-2} M_{\odot} c^2]$	aLIGO AdV KAGRA	50 - -	60 25	80-90 35 5-25	110 - 120 65 - 80 25 - 95	210 100–155 95+
Burst Range (kpc) $[E_{\rm GW} = 10^{-9} M_{\odot} c^2]$	aLIGO AdV KAGRA	15 - -	20 10 -	25 - 30 10 0 - 10	35 - 40 20 - 25 10 - 30	70 35-50 30+

Table 2 Achieved and projected detector sensitivities for a $1.4M_{\odot}+1.4M_{\odot}$ BNS system, a $30M_{\odot}+30M_{\odot}$ BBH system, a $1.4M_{\odot}+10M_{\odot}$ NSBH system, and for an unmodeled burst signal. The quoted ranges correspond to the orientation-averaged spacetime volumes surveyed per unit detector time. For the burst ranges, we assume an emitted energy in GWs at 140 Hz of $E_{GW} = 10^{-2}M_{\odot}c^2$ and of $E_{GW} = 10^{-9}M_{\odot}c^2$. The later is consistent with the order of magnitude of the energy expected from core-collapse of massive stars (see footnote 4). Both CBC and burst ranges are obtained using a single-detector SNR threshold of 8. The O1 and O2 numbers are representative of the best ranges for the LIGO detectors: Hanford in O1 and Livingston in O2. The O3 numbers for aLIGO and AdV reflect recent average performance of each of the three detectors. Range intervals are quoted for future observing runs due to uncertainty about the sequence and impact of upgrades.

rho=8

$$D_{\text{horizon}} = \frac{2}{5} \sqrt{\frac{5}{6}} \frac{c}{\pi^{2/3}} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/6} \left[\int_{f_{\text{min}}}^{f_{\text{max}}} \frac{f^{7/3}}{S_n(f)} df\right]^{1/2} \frac{1}{\rho}$$

岩手大集中講義 現代物理学1 (後半) 「相対性理論」

2022/2 真貝寿明(大阪工業大学)

3. waveforms

CBC: compact binary coalescence

HS+, ApJ 835 (2017)276

Horizon distance (Observational range)

真貝寿明(大阪工業大学)

$$\rho^{2} = \frac{8}{5} \frac{\epsilon_{r}(a)}{f_{R}^{2}} \frac{(1+z)M}{S_{h}(f_{R}/(1+z))} \\ \times \left(\frac{(1+z)M}{d_{L}(z)}\right)^{2} \left(\frac{4\mu}{M}\right)^{2}.$$

岩手大集中講義 現代物理学] (後半)

「相対性理論」

2022/2

重力波観測の現状

観測スケジュール (Observation 1/2/3a/3b)

Public Alert started from O3a

LIGO Hanford NoHoFT Duration: 0d 02:49:00 (prev: science)	LIGO Livingston science Duration: 0d 07:31:59 (prev: nohoft) Las Updated at 17:1	Virgo science Duration: 0d 12:11:45 (prev: hoftok) Last updated at 17:11	Kagra NOHOFT Duration: 1d 18:34:59 (prev: unknown) Last updated at 17:11	Thu Aug 15 2019 17:11:59 1249891937	LDAS 14 OK
DMT 15 ok	Low-latency Data 1/43 WARNING	LIGO Data Replicator Call Dan Morena 2/14 CRIMOL	DetChar Summary 23 0K	DetChar Jobs 16 ox	DetChar- Omicron Jobs 155 0K
GraCEDb 1 ok	LVAlert 2 ox Last updated at 17:11	GraCEDb Playground 6 ox Last updated at 12:11	DQSegDB 1/15 UNKNOWN	NDS 33 ok Last updated at 17:11	ligoDV Web 70K
gstLAL Inspiral	CIS 2 OK	EMFollow 2 ok	PyCBC Live	Auth 28 ok	iDQ 39 ox

https://monitor.ligo.org/gwstatus

https://gracedb.ligo.org

HOME	PUBLIC ALERTS	SEARCH	LATEST	DOCUMENT	ATION					LOGIN
Latest — as of 19 August 2019 22:13:41 UTC Test and MDC events and superevents are not included in the search results by default; see the <u>query help</u> for information on how to search for events and superevents in those categories.										
Query:										
Search for:	Superevent 📀									
	Search									
UID	Labels				t_start	t_0	t_end	FAR (Hz)	UTC	ated
<u>5190816i</u>	PE_READY ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK GCN_PRELIM_SENT				1249995888.757789	1249995889.757789	1249995890.757789	1.436e-08	2019-08-1 UTC	6 13:05:12
<u>S190814bv</u>	PE_READY ADVOK SKY PASTRO_READY DQOK	MAP_READY EM	IBRIGHT_READY	1	1249852255.996787	1249852257.012957	1249852258.021731	2.033e-33	2019-08-1 UTC	4 21:11:18
<u>5190808ae</u>	ADVNO SKYMAP_READ GCN_PRELIM_SENT	DY EMBRIGHT_R	EADY PASTRO_F	READY DQOK	1249338098.496141	1249338099.496141	1249338100.496141	3.366e-08	2019-08-0 UTC)8 22:21:45
<u>5190728q</u>	PE_READY ADVOK SKY PASTRO_READY DQOK	MAP_READY EM	IBRIGHT_READY	r	1248331527.497344	1248331528.546797	1248331529.706055	2.527e-23	2019-07-2 UTC	8 06:45:27
<u>S190727h</u>	ADVOK SKYMAP_READ GCN_PRELIM_SENT	Y EMBRIGHT_R	EADY PASTRO_F	READY DQOK	1248242630.976288	1248242631.985887	1248242633.180176	1.378e-10	2019-07-2 UTC	27 06:03:51 スクリーンショ
<u>S190720a</u>	PE_READY ADVOK SKY PASTRO_READY DQOK	MAP_READY EM	IBRIGHT_READY	(1247616533.703127	1247616534.704102	1247616535.860840	3.801e-09	2019-07-2 UTC	0 00:08:53
<u>5190718y</u>	ADVOK SKYMAP_READ GCN_PRELIM_SENT	OY EMBRIGHT_RE	EADY PASTRO_F	READY DQOK	1247495729.067865	1247495730.067865	1247495731.067865	3.648e-08	2019-07-1 UTC	8 14:35:34

GraceDB – Gravitational-Wave Candidate Event Database

Gravitational Wave Events (4+) LIGO/Virgo alerts from GCN Peter Kramer ***** 4.7, 10 Ratings Free

重力波観測情報は、アプリで見る時代

Public Alerts

Time since gravitational-wave signal

Fig. 8 Alert timeline. The *Preliminary GCN Notice* is sent autonomously within 1-10 minutes after the GW candidate trigger time. Some preliminary alerts may be retracted after human inspection for data quality, instrumental conditions, and pipeline behavior. The human vetted *Initial GCN Notice* or *Retraction GCN Notice* and associated *GCN Circular* are distributed within a few hours for BNS or NSBH sources and within one day for BBH. Update notices and circulars are sent whenever the estimate of the parameters of the signal significantly improves. Figure adapted from the LIGO/Virgo Public Alerts User Guide (see footnote 17)

https://emfollow.docs.ligo.org/userguide/

Public Alerts

GraceDB – Gravitational-Wave Candidate Event Database

HOME	PUBLIC ALERTS	SEARCH	LATEST D	OCUMENTATION				LOGIN				
Latest –	Latest — as of 15 February 2020 13:15:11 UTC											
Fest and MDC events and superevents are not included in the search results by default; see the <u>query help</u> for information on how to search for events and superevents in those categories.												
Query:												
Search for:	Superevent ᅌ											
	Search											
UID		Labels		t_start	t_0	t_end	FAR (Hz)	UTC 🗘				
<u>S200213t</u>	EM_READY ADVOK EM EMBRIGHT_READY PAS GCN_PRELIM_SENT	_Selected SKYM TRO_READY DQ	AP_READY OK	1265602257.327981	1265602258.327981	1265602259.327981	1.767e- 08	2020-02-13 04:11:05 UTC				
<u>S200208q</u>	EM_READY PE_READY A SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVOK EM_Sele GHT_READY PA NT	cted STRO_READY	1265202094.944824	1265202095.991118	1265202096.991118	2.518e- 09	2020-02-08 13:01:39 UTC				
<u>S200129m</u>	EM_READY PE_READY A SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVOK EM_Sele GHT_READY PA NT	cted STRO_READY	1264316115.411621	1264316116.435104	1264316117.460904	6.697e- 32	2020-01-29 06:55:42 UTC				
<u>S200128d</u>	EM_READY PE_READY A SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVOK EM_Sele GHT_READY PA NT	cted STRO_READY	1264213228.897043	1264213229.903320	1264213230.953959	1.647e- 08	2020-01-28 02:20:36 UTC				
<u> 5200116ah</u>	EM_READY PE_READY A SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVNO EM_Sele GHT_READY PA NT	cted STRO_READY	1263211019.170712	1263211020.170712	1263211021.170712	2.029e- 12	2020-01-16 11:57:11 UTC				
<u>S200115j</u>	EM_READY PE_READY / SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVOK E M_Sele GHT_READY PA NT	cted STRO_READY	1263097406.735840	1263097407.752869	1263097408.769043	2.094e- 11	2020-01-15 04:23:40 UTC				
<u>S200114f</u>	EM_READY ADVOK EM GCN_PRELIM_SENT	_Selected SKYM	AP_READY DQOK	1263002916.225766	1263002916.239300	1263002916.252885	1.226e- 09	2020-01-14 02:11:12 UTC				
<u>S200112r</u>	EM_READY PE_READY A SKYMAP_READY EMBRI DQOK GCN_PRELIM_SE	ADVOK EM_Sele GHT_READY PA NT	cted STRO_READY	1262879935.091777	1262879936.093931	1262879937.093931	1.283e- 11	2020-01-12 15:59:06 UTC				

https://gracedb.ligo.org/latest/

GWTC-1 (gravitational-wave transient catalogue): O1+O2 PRX9 (2019) 031040 [arXiv:1811.12907]

GWTC-1

PHYSICAL REVIEW X 9, 031040 (2019)

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)

(Received 14 December 2018; revised manuscript received 27 March 2019; published 4 September 2019)

O1: September 12, 2015 -- January 19, 2016
GW150914 BHBH
O2: November 30, 2016 -- August 25, 2017
GW170817 NSNS
GWTC-1 catalogue paper [arXiv:1811.12907]
data released to public Feb, 2019

O3a: April 1, 2019 -- September 30, 2019
▶ data released to public April, 2021
O3b: November 1, 2019 -- May 1, 2020
▶ data released to public November, 2021

arXiv:1304.0670 (2020/1 version)

Sky Localization

	Low-	atency analyis	is	Refined analysis			
Event	$d_L(Mpc)$	$\Delta \Omega({\rm deg^2})$	IFOs	$d_L(Mpc)$	$\Delta \Omega({ m deg}^2)$	IFOs	
GW150914		307	HL	440^{+150}_{-170}	182	HL	
GW151012		_	_	1080^{+550}_{-490}	1523	HL	
GW151226	—	1337	HL	490^{+180}_{-190}	1033	HL	
GW170104	$730\substack{+340 \\ -320}$	1632	HL	990^{+440}_{-430}	921	HL	
GW170608	$310\substack{+200 \\ -120}$	864	HL	320^{+120}_{-110}	392	HL	
GW170729	_	_		$2840\substack{+1400 \\ -1360}$	1041	HLV	
GW170809	1080^{+520}_{-470}	1155	HL	1030^{+320}_{-390}	308	HLV	
GW170814	480^{+190}_{-170}	97	HLV	600^{+150}_{-220}	87	HLV	
GW170817	40^{+10}_{-10}	31	HLV	40^{+7}_{-15}	16	HLV	
GW170818	_	_	_	$1060\substack{+420 \\ -380}$	39	HLV	
GW170823	1380^{+700}_{-670}	2145	HL	1940^{+970}_{-900}	1666	HL	

LV event categories

Fig. 9 The four astrophysical categories in terms (BNS, NSBH, BBH, and MassGap) of component masses m1 and m2, which are used to define the source classification. By convention, the component masses are defined such that $m1 \ge m2$, so that the primary compact object in the binary (i.e., component 1), is always more massive than the secondary compact object (i.e., component 2). Figure adapted from the LIGO/Virgo Public Alerts User Guide (see footnote 17)

https://emfollow.docs.ligo.org/userguide/

2. LV & LVK Observational Results

GWTC-2

Gravitational Wave Transient Catalog 2

PHYSICAL REVIEW X 11, 021053 (2021)

arXiv:2010.14527

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run

R. Abbott *et al.*^{*} (LIGO Scientific Collaboration and Virgo Collaboration)

(Received 30 October 2020; revised 23 February 2021; accepted 20 April 2021; published 9 June 2021)

*39 events in O3a 50 events in total

* False-Alarm Rate < 2 / 1 yr

* GWyymmdd_hhmmss for new events

- GW190412: the first BBH with definitively asymmetric component masses, which also shows evidence for higher harmonics
- GW190425: the second gravitational-wave event consistent with a BNS, following GW170817
- GW190426_152155: a low-mass event consistent with either an NSBH or BBH
- GW190514_065416: a BBH with the smallest effective aligned spin of all O3a events
- GW190517_055101: a BBH with the largest effective aligned spin of all O3a events
- GW190521: a BBH with total mass over 150 times the mass of the Sun
- GW190814: a highly asymmetric system of ambiguous nature, corresponding to the merger of a 23 solar mass black hole with a 2.6 solar mass compact object, making the latter either the lightest black hole or heaviest neutron star observed in a compact binary
- GW190924_021846: likely the lowest-mass BBH, with both black holes exceeding 3 solar masses

arXiv:2010.14529 Test of GR arXiv:2010.14533 Population properties

Event	$\stackrel{M}{(M_{\odot})}$	(M_{\odot})	${m_1 \choose M_{\odot}}$	${m_2 \atop (M_{\odot})}$	$\chi_{ m eff}$	D_{L} (Gpc)	z	$\stackrel{M_{ m f}}{(M_{\odot})}$	$\chi_{ m f}$	$\Delta\Omega (\text{deg}^2)$	SNR
GW190408_181802	$42.9\substack{+4.1\\-2.9}$	$18.3^{+1.8}_{-1.2}$	$24.5_{-3.4}^{+5.1}$	$18.3\substack{+3.2 \\ -3.5}$	$-0.03\substack{+0.13\\-0.19}$	$1.58\substack{+0.40 \\ -0.59}$	$0.30\substack{+0.06 \\ -0.10}$	$41.0\substack{+3.8 \\ -2.7}$	$0.67\substack{+0.06 \\ -0.07}$	140	$15.3\substack{+0.2 \\ -0.3}$
GW190412	$38.4^{+3.8}_{-3.7}$	$13.3\substack{+0.4 \\ -0.3}$	$30.0^{+4.7}_{-5.1}$	$8.3^{+1.6}_{-0.9}$	$0.25\substack{+0.08\\-0.11}$	$0.74\substack{+0.14 \\ -0.17}$	$0.15\substack{+0.03 \\ -0.03}$	$37.3^{+3.9}_{-3.9}$	$0.67\substack{+0.05 \\ -0.06}$	21	$18.9\substack{+0.2 \\ -0.3}$
$GW190413_052954$	$56.9^{+13.1}_{-8.9}$	$24.0\substack{+5.4 \\ -3.7}$	$33.4\substack{+12.4 \\ -7.4}$	$23.4^{+6.7}_{-6.3}$	$0.01\substack{+0.29 \\ -0.33}$	$4.10\substack{+2.41 \\ -1.89}$	$0.66\substack{+0.30 \\ -0.27}$	$54.3^{+12.4}_{-8.4}$	$0.69\substack{+0.12 \\ -0.13}$	1400	$8.9\substack{+0.4\\-0.8}$
GW190413_134308	$76.1\substack{+15.9 \\ -10.6}$	$31.9^{+7.3}_{-4.6}$	$45.4^{+13.6}_{-9.6}$	$30.9\substack{+10.2\\-9.6}$	$-0.01\substack{+0.24\\-0.28}$	$5.15\substack{+2.44\\-2.34}$	$0.80\substack{+0.30 \\ -0.31}$	$72.8\substack{+15.2 \\ -10.3}$	$0.69\substack{+0.10 \\ -0.12}$	520	$10.0\substack{+0.4\\-0.5}$
GW190421_213856	$71.8\substack{+12.5 \\ -8.6}$	$30.7^{+5.5}_{-3.9}$	$40.6\substack{+10.4 \\ -6.6}$	$31.4^{+7.5}_{-8.2}$	$-0.05\substack{+0.23\\-0.26}$	$3.15^{+1.37}_{-1.42}$	$0.53\substack{+0.18 \\ -0.21}$	$68.6\substack{+11.7 \\ -8.1}$	$0.68\substack{+0.10 \\ -0.11}$	1000	$10.7\substack{+0.2\\-0.4}$
GW190424_180648	$70.7\substack{+13.4 \\ -9.8}$	$30.3^{+5.7}_{-4.2}$	$39.5^{+10.9}_{-6.9}$	$31.0\substack{+7.4 \\ -7.3}$	$0.15\substack{+0.22\\-0.22}$	$2.55\substack{+1.56 \\ -1.33}$	$0.45\substack{+0.22 \\ -0.21}$	$67.1\substack{+12.5\\-9.2}$	$0.75\substack{+0.08 \\ -0.09}$	26000	$10.4\substack{+0.2 \\ -0.4}$
GW190425	$3.4\substack{+0.3 \\ -0.1}$	$1.44\substack{+0.02\\-0.02}$	$2.0\substack{+0.6\\-0.3}$	$1.4\substack{+0.3 \\ -0.3}$	$0.06\substack{+0.11 \\ -0.05}$	$0.16\substack{+0.07 \\ -0.07}$	$0.03\substack{+0.01 \\ -0.02}$	_	-	9900	$12.4\substack{+0.3 \\ -0.4}$
$GW190426_152155$	$7.2^{+3.5}_{-1.5}$	$2.41\substack{+0.08 \\ -0.08}$	$5.7\substack{+4.0 \\ -2.3}$	$1.5\substack{+0.8 \\ -0.5}$	$-0.03\substack{+0.33\\-0.30}$	$0.38\substack{+0.19 \\ -0.16}$	$0.08\substack{+0.04 \\ -0.03}$	_	_	1400	$8.7\substack{+0.5 \\ -0.6}$
$GW190503_185404$	$71.3\substack{+9.3 \\ -8.0}$	$30.1^{+4.2}_{-4.0}$	$42.9\substack{+9.2 \\ -7.8}$	$28.5\substack{+7.5 \\ -7.9}$	$-0.02\substack{+0.20\\-0.26}$	$1.52\substack{+0.71 \\ -0.66}$	$0.29\substack{+0.11 \\ -0.11}$	$68.2\substack{+8.7 \\ -7.5}$	$0.67\substack{+0.09 \\ -0.12}$	94	$12.4\substack{+0.2 \\ -0.3}$
$GW190512_180714$	$35.6\substack{+3.9 \\ -3.4}$	$14.5^{+1.3}_{-1.0}$	$23.0\substack{+5.4 \\ -5.7}$	$12.5\substack{+3.5 \\ -2.5}$	$0.03\substack{+0.13\\-0.13}$	$1.49\substack{+0.53 \\ -0.59}$	$0.28\substack{+0.09\\-0.10}$	$34.2^{+3.9}_{-3.4}$	$0.65\substack{+0.07\\-0.07}$	230	$12.2\substack{+0.2\\-0.4}$
GW190513_205428	$53.6\substack{+8.6 \\ -5.9}$	$21.5^{+3.6}_{-1.9}$	$35.3\substack{+9.6 \\ -9.0}$	$18.1\substack{+7.3 \\ -4.2}$	$0.12\substack{+0.29 \\ -0.18}$	$2.16\substack{+0.94 \\ -0.80}$	$0.39\substack{+0.14 \\ -0.13}$	$51.3\substack{+8.1 \\ -5.8}$	$0.69\substack{+0.14\\-0.12}$	490	$12.9\substack{+0.3 \\ -0.4}$
$GW190514_065416$	$64.2\substack{+16.6\\-9.6}$	$27.4\substack{+6.9 \\ -4.3}$	$36.9^{+13.4}_{-7.3}$	$27.5\substack{+8.2 \\ -7.7}$	$-0.16\substack{+0.28\\-0.32}$	$4.93^{+2.76}_{-2.41}$	$0.77\substack{+0.34 \\ -0.33}$	$61.6^{+16.0}_{-9.2}$	$0.64\substack{+0.11\\-0.14}$	2400	$8.2\substack{+0.3 \\ -0.6}$
$GW190517_055101$	$61.9\substack{+10.0\\-9.6}$	$26.0\substack{+4.2 \\ -4.0}$	$36.4\substack{+11.8 \\ -7.8}$	$24.8\substack{+6.9 \\ -7.1}$	$0.53\substack{+0.20 \\ -0.19}$	$2.11\substack{+1.79 \\ -1.00}$	$0.38\substack{+0.26 \\ -0.16}$	$57.8^{+9.4}_{-9.1}$	$0.87\substack{+0.05 \\ -0.07}$	460	$10.7\substack{+0.4\\-0.6}$
$\rm GW190519_153544$	$104.2^{+14.5}_{-14.5}$	$\frac{5}{9}43.5^{+6.8}_{-6.8}$	$64.5\substack{+11.3\\-13.2}$	$39.9\substack{+11.0 \\ -10.6}$	$0.33\substack{+0.19 \\ -0.22}$	$2.85^{+2.02}_{-1.14}$	$0.49\substack{+0.27\\-0.17}$	$98.7\substack{+13.5 \\ -14.2}$	$0.80\substack{+0.07\\-0.12}$	770	$15.6\substack{+0.2 \\ -0.3}$
GW190521	$157.9^{+37.4}_{-20.9}$	$66.9^{+15.5}_{-9.2}$	$91.4\substack{+29.3\\-17.5}$	$66.8\substack{+20.7\\-20.7}$	$0.06\substack{+0.31 \\ -0.37}$	$4.53^{+2.30}_{-2.13}$	$0.72\substack{+0.29 \\ -0.29}$	$150.3^{+35.8}_{-20.0}$	$^3_{0}0.73^{+0.11}_{-0.14}$	940	$14.2\substack{+0.3 \\ -0.3}$
$\rm GW190521_074359$	$74.4\substack{+6.8 \\ -4.6}$	$31.9\substack{+3.1 \\ -2.4}$	$42.1\substack{+5.9 \\ -4.9}$	$32.7\substack{+5.4 \\ -6.2}$	$0.09\substack{+0.10 \\ -0.13}$	$1.28\substack{+0.38 \\ -0.57}$	$0.25\substack{+0.06\\-0.10}$	$70.7\substack{+6.4 \\ -4.2}$	$0.72\substack{+0.05\\-0.07}$	500	$25.8\substack{+0.1 \\ -0.2}$
$\rm GW190527_092055$	$58.5\substack{+27.9\\-10.6}$	$24.2\substack{+11.9 \\ -4.4}$	$36.2^{+19.1}_{-9.5}$	$22.8^{+12.7}_{-8.1}$	$0.13\substack{+0.29 \\ -0.28}$	$3.10\substack{+4.85\\-1.64}$	$0.53\substack{+0.61 \\ -0.25}$	$55.9\substack{+26.4\\-10.1}$	$0.73\substack{+0.12\\-0.16}$	3800	$8.1\substack{+0.4 \\ -1.0}$
$\rm GW190602_175927$	$114.1^{+18.5}_{-15.7}$	$\frac{5}{7}$ 48.3 $^{+8.6}_{-8.0}$	$67.2\substack{+16.0\\-12.6}$	$47.4^{+13.4}_{-16.6}$	$0.10\substack{+0.25\\-0.25}$	$2.99\substack{+2.02\\-1.26}$	$0.51\substack{+0.27 \\ -0.19}$	$108.8^{+17.2}_{-14.8}$	$^2_{3}0.71^{+0.10}_{-0.13}$	720	$12.8\substack{+0.2 \\ -0.3}$
$GW190620_030421$	$90.1\substack{+17.3 \\ -12.1}$	$37.5^{+7.8}_{-5.7}$	$55.4\substack{+15.8\\-12.0}$	$35.0\substack{+11.6 \\ -11.4}$	$0.34\substack{+0.21 \\ -0.25}$	$3.16\substack{+1.67\\-1.43}$	$0.54\substack{+0.22\\-0.21}$	$85.4\substack{+15.9\\-11.4}$	$0.80\substack{+0.08\\-0.14}$	6700	$12.1\substack{+0.3\\-0.4}$
$\rm GW190630_185205$	$58.8\substack{+4.7 \\ -4.8}$	$24.8^{+2.1}_{-2.0}$	$35.0\substack{+6.9 \\ -5.7}$	$23.6\substack{+5.2 \\ -5.1}$	$0.10\substack{+0.12\\-0.13}$	$0.93\substack{+0.56\\-0.40}$	$0.19\substack{+0.10 \\ -0.07}$	$56.1^{+4.5}_{-4.6}$	$0.70\substack{+0.06\\-0.07}$	1300	$15.6\substack{+0.2 \\ -0.3}$
GW190701_203306	$94.1\substack{+11.6\\-9.3}$	$40.2\substack{+5.2 \\ -4.7}$	$53.6\substack{+11.7 \\ -7.8}$	$40.8\substack{+8.3 \\ -11.5}$	$-0.06\substack{+0.23\\-0.28}$	$2.14\substack{+0.79 \\ -0.73}$	$0.38\substack{+0.12\\-0.12}$	$90.0\substack{+10.8\\-8.6}$	$0.67\substack{+0.09\\-0.12}$	45	$11.3\substack{+0.2 \\ -0.4}$
$\rm GW190706_222641$	$101.6\substack{+17.9\\-13.5}$	$\frac{9}{5}$ 42.0 ^{+8.4} _{-6.2}	$64.0\substack{+15.2\\-15.2}$	$38.5^{+12.5}_{-12.4}$	$0.32\substack{+0.25 \\ -0.30}$	$5.07\substack{+2.57\\-2.11}$	$0.79\substack{+0.31 \\ -0.28}$	$96.3\substack{+16.7\\-13.2}$	$0.80\substack{+0.08\\-0.17}$	610	$12.6\substack{+0.2 \\ -0.4}$
$\rm GW190707_093326$	$20.0\substack{+1.9 \\ -1.3}$	$8.5\substack{+0.6 \\ -0.4}$	$11.5\substack{+3.3 \\ -1.7}$	$8.4^{+1.4}_{-1.6}$	$-0.05\substack{+0.10\\-0.08}$	$0.80\substack{+0.37 \\ -0.38}$	$0.16\substack{+0.07 \\ -0.07}$	$19.2\substack{+1.9 \\ -1.3}$	$0.66\substack{+0.03\\-0.04}$	1300	$13.3\substack{+0.2 \\ -0.4}$
$\rm GW190708_232457$	$30.8\substack{+2.5 \\ -1.8}$	$13.1\substack{+0.9 \\ -0.6}$	$17.5\substack{+4.7 \\ -2.3}$	$13.1\substack{+2.0 \\ -2.7}$	$0.02\substack{+0.10\\-0.08}$	$0.90\substack{+0.33 \\ -0.40}$	$0.18\substack{+0.06 \\ -0.07}$	$29.4\substack{+2.5 \\ -1.7}$	$0.69\substack{+0.04\\-0.04}$	14000	$13.1\substack{+0.2 \\ -0.3}$
$GW190719_{215514}$	$55.8^{+16.3}_{-10.0}$	$22.7^{+5.9}_{-3.7}$	$35.2\substack{+16.9\\-9.9}$	$20.2\substack{+8.1 \\ -6.5}$	$0.35\substack{+0.28\\-0.32}$	$4.61^{+2.84}_{-2.17}$	$0.73\substack{+0.35 \\ -0.30}$	$52.9^{+15.6}_{-9.5}$	$0.80\substack{+0.10\\-0.16}$	2300	$8.3^{+0.3}_{-1.0}$
$GW190720_000836$	$21.3\substack{+4.3 \\ -2.3}$	$8.9\substack{+0.5 \\ -0.8}$	$13.3\substack{+6.6 \\ -3.0}$	$7.8\substack{+2.2 \\ -2.2}$	$0.18\substack{+0.14 \\ -0.12}$	$0.81\substack{+0.71 \\ -0.33}$	$0.16\substack{+0.12 \\ -0.06}$	$20.3\substack{+4.5 \\ -2.3}$	$0.72\substack{+0.06\\-0.05}$	510	$11.0\substack{+0.3 \\ -0.8}$
$GW190727_060333$	$65.8\substack{+10.9\\-7.4}$	$28.1\substack{+4.9 \\ -3.4}$	$37.2\substack{+9.4 \\ -5.9}$	$28.8\substack{+6.6 \\ -7.9}$	$0.12\substack{+0.26 \\ -0.25}$	$3.60\substack{+1.56\\-1.51}$	$0.60\substack{+0.20\\-0.22}$	$62.6\substack{+10.2\\-7.0}$	$0.73\substack{+0.10 \\ -0.10}$	860	$11.9\substack{+0.3 \\ -0.5}$
$GW190728_064510$	$20.5\substack{+4.5 \\ -1.3}$	$8.6\substack{+0.5 \\ -0.3}$	$12.2\substack{+7.1 \\ -2.2}$	$8.1^{+1.7}_{-2.6}$	$0.12\substack{+0.19 \\ -0.07}$	$0.89\substack{+0.25\\-0.37}$	$0.18\substack{+0.05 \\ -0.07}$	$19.5\substack{+4.6 \\ -1.3}$	$0.71\substack{+0.04 \\ -0.04}$	410	$13.0\substack{+0.2 \\ -0.4}$
GW190731_140936	$67.1\substack{+15.3 \\ -10.2}$	$28.4\substack{+6.8 \\ -4.5}$	$39.3^{+11.8}_{-8.2}$	$28.0\substack{+8.9 \\ -8.4}$	$0.08\substack{+0.24 \\ -0.24}$	$3.97^{+2.56}_{-2.07}$	$0.65\substack{+0.32 \\ -0.30}$	$63.9\substack{+14.4\\-9.8}$	$0.71\substack{+0.10 \\ -0.12}$	3000	$8.6\substack{+0.2 \\ -0.5}$
$GW190803_022701$	$62.7\substack{+11.8\\-8.4}$	$26.7^{+5.2}_{-3.8}$	$36.1^{+10.2}_{-6.7}$	$26.7\substack{+7.1 \\ -7.6}$	$-0.01\substack{+0.25\\-0.26}$	$3.69^{+2.04}_{-1.69}$	$0.61\substack{+0.26 \\ -0.24}$	$59.9\substack{+11.2\\-7.9}$	$0.69\substack{+0.10\\-0.11}$	1500	$8.6\substack{+0.3 \\ -0.5}$
GW190814	$25.8^{+1.0}_{-0.9}$	$6.09\substack{+0.06\\-0.06}$	$23.2^{+1.1}_{-1.0}$	$2.59\substack{+0.08 \\ -0.09}$	$0.00\substack{+0.06\\-0.06}$	$0.24\substack{+0.04 \\ -0.05}$	$0.05\substack{+0.009\\-0.010}$	$25.6\substack{+1.0 \\ -0.9}$	$0.28\substack{+0.02\\-0.02}$	19	$24.9\substack{+0.1 \\ -0.2}$
$GW190828_063405$	$57.5\substack{+7.5 \\ -4.4}$	$24.8^{+3.3}_{-2.0}$	$31.8\substack{+5.8 \\ -3.9}$	$25.9\substack{+4.4 \\ -4.6}$	$0.19\substack{+0.15 \\ -0.16}$	$2.22\substack{+0.63 \\ -0.95}$	$0.40\substack{+0.09\\-0.15}$	$54.5\substack{+6.9\\-4.0}$	$0.76\substack{+0.06 \\ -0.07}$	520	$16.2\substack{+0.2 \\ -0.3}$
GW190828_065509	$34.1_{-4.5}^{+5.5}$	$13.3^{+1.2}_{-0.9}$	$23.8^{+7.2}_{-7.0}$	$10.2\substack{+3.5\\-2.1}$	$0.08\substack{+0.16 \\ -0.16}$	$1.66\substack{+0.63\\-0.61}$	$0.31\substack{+0.10 \\ -0.10}$	$32.9^{+5.7}_{-4.5}$	$0.65\substack{+0.09\\-0.08}$	640	$10.0\substack{+0.3 \\ -0.5}$
GW190909_114149	$71.2^{+54.3}_{-15.0}$	$29.5^{+17.5}_{-6.3}$	$43.2^{+50.7}_{-12.2}$	$27.6^{+13.0}_{-10.9}$	$-0.03\substack{+0.44\\-0.36}$	$4.77^{+3.70}_{-2.66}$	$0.75_{-0.37}^{+0.45}$	$68.3^{+52.5}_{-14.5}$	$0.68\substack{+0.16 \\ -0.18}$	4200	$8.1^{+0.4}_{-0.7}$
GW190910_112807	$78.7\substack{+9.5\\-9.0}$	$33.9^{+4.3}_{-3.9}$	$43.5_{-6.2}^{+7.6}$	$35.1^{+6.3}_{-7.0}$	$0.02\substack{+0.19 \\ -0.18}$	$1.57^{+1.07}_{-0.64}$	$0.29\substack{+0.17\\-0.11}$	$75.0^{+8.7}_{-8.5}$	$0.70\substack{+0.08\\-0.07}$	10000	$14.1\substack{+0.2 \\ -0.3}$
GW190915_235702	$59.5\substack{+7.5 \\ -6.2}$	$25.1^{+3.1}_{-2.6}$	$34.9^{+9.5}_{-6.2}$	$24.4^{+5.5}_{-6.0}$	$0.03\substack{+0.19\\-0.24}$	$1.70\substack{+0.71\\-0.64}$	$0.32\substack{+0.11 \\ -0.11}$	$56.8^{+7.1}_{-5.8}$	$0.71\substack{+0.09\\-0.11}$	380	$13.6\substack{+0.2 \\ -0.3}$
GW190924_021846	$13.9\substack{+5.1 \\ -0.9}$	$5.8\substack{+0.2 \\ -0.2}$	$8.8^{+7.0}_{-2.0}$	$5.0^{+1.3}_{-1.9}$	$0.03\substack{+0.30 \\ -0.09}$	$0.57\substack{+0.22\\-0.22}$	$0.12\substack{+0.04 \\ -0.04}$	$13.3^{+5.2}_{-1.0}$	$0.67\substack{+0.05\\-0.05}$	380	$11.5\substack{+0.3 \\ -0.4}$
GW190929_012149	$90.6\substack{+21.2\\-14.1}$	$34.3^{+8.6}_{-6.5}$	$64.7\substack{+22.4\\-18.9}$	$25.7^{+14.4}_{-9.7}$	$0.03\substack{+0.27\\-0.27}$	$3.68^{+2.98}_{-1.68}$	$0.61\substack{+0.38 \\ -0.24}$	$87.5^{+20.7}_{-14.1}$	$0.64\substack{+0.17\\-0.23}$	1800	$9.8\substack{+0.8\\-0.6}$
GW190930 133541	$20.3^{+9.0}$	$8.5^{+0.5}$	$12.3^{+12.5}$	$7.8^{+1.7}$	$0.14^{+0.31}$	$0.78^{+0.37}$	$0.16^{+0.07}$	$19.3^{+9.3}$	$0.72^{+0.07}$	1800	$9.5^{+0.3}$

GWTC-2

Gravitational Wave Transient Catalog 2

PHYSICAL REVIEW X 11, 021053 (2021)

arXiv:2010.14527

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run

> R. Abbott *et al.** (LIGO Scientific Collaboration and Virgo Collaboration)

(Received 30 October 2020; revised 23 February 2021; accepted 20 April 2021; published 9 June 2021)

*39 events in O3a 50 events in total

- * False-Alarm Rate < 2 / 1 yr
- * GWyymmdd_hhmmss for new events

GWTC-2.1

Gravitational Wave Transient Catalog 2.1

arXiv:2108.01045

- * re-calibrated data in O3a
- * includes 1201 events of FAR < 2 / 1 day
- * 44 events $P_{astro} > 0.5$ (8 new in O3a)
- * 3 events retracted since $P_{astro} < 0.5$

55 events in total

Pastro+Pterre=1

- GW190917 _114630 (Pastro = 0.77) potentially NSBH
- GW190426 190642 (P_{astro} = 0.75) total mass 185 M -> 175M final (maximum ever)
- GW190403 _051519 (P_{astro} = 0.61) & GW190805 _211137(P_{astro} = 0.95) have χ > 0.8 BH

	GWTC-2	GWTC-2.1
BHBH	add 36 (total 46)	+8 -3 (51)
NSNS	+1 (2)	+0 (2)
NSBH		
BH+unknown	+ 2 (2)	+0 (2)
Total	+ 39 (50)	+5 (55)

2.1V & IVK Observational Results

Whitened Data BayesWave LALInference cWB max-L

200

50

20

0.30

0.35

Frequency [Hz] 100

Hisaaki Shinkai (Osaka Institute of Technology) JGRG30 (online) December 8, 2021

Hisaaki Shinkai (Osaka Institute of Technology) JGRG30 (online) December 8, 2021

LVK papers

0

http://www.oit.ac.jp/is/shinkai/linkGW.html

nl	v	for	selected	ones	before	O 3a	and	a11	for	after	031
ш	y	101	scietteu	ones	Derore	USa,	anu	an	101	anci	OSI

	abbrev	title	arXiv, publ	Science Summary
LVK	O3bAstroDist	The population of merging compact binaries inferred using gravitational waves through GWTC-3	arXiv:2111.03634	Eng , <u>Jap</u> Nov 5, 2021
LVK	O3bGRB	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b	arXiv:2111.03608	<u>Eng</u> , Jap Nov 5, 2021
LVK	O3bCatalog	GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run	arXiv:2111.03606	<u>Eng</u> , <u>Jap</u> Nov 5, 2021
LVK	O3Cosmology	Constraints on the cosmic expansion history from GWTC-3	arXiv:2111.03604	<u>Eng</u> , <u>Jap</u> Nov 5, 2021
LVK	O3Radiometer	All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs	arXiv:2110.09834	<u>Eng</u> , Jap Oct 27, 2021
LV	O3aSSM	Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run	arXiv:2109.12197	<u>Eng</u> , Jap Sep 28, 2021
LVK	O3LMXBsAMXPs	Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data	arXiv:2109.09255	<u>Eng</u> , Jap Sep 20, 2021
LV	GWTC2.1	GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run	arXiv:2108.01045	<u>Eng</u> , <u>Jap</u> Aug 2, 2021
LVK	O3LongBurst	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run	arXiv: 2107.13796	<u>Eng</u> , <u>Jap</u> July 30, 2021
LVK	O3ShortBurst	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run	arXiv: 2107.03701	<mark>Eng</mark> , Jap July 9, 2021
LVK	O3ShortBurst	All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data	arXiv: 2107.00600	<mark>Eng</mark> , Jap July 1, 2021
LVK	NSBH	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences	<u>АрЛL 915; L5 (2021)</u>	Eng , <u>Jap</u> June 30, 2021
LVK	O3IMBH	Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo	arXiv:2105.15120 submitted to	<u>Eng</u> , <u>Jap</u> May 31, 2021
LVK	O3DarkPhoton	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run	arXiv:2105.13085 submitted to	<u>Eng</u> , <u>Jap</u> May 27, 2021
LVK	O3DirectedSNR	Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo	arXiv:2105.11641 submitted to	<u>Eng</u> , <u>Jap</u> May 26, 2021
LV	O3aLensing	Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run	arXiv:2105.06384 submitted to	<u>Eng</u> , <u>Jap</u> May 13, 2021
LVK	O3aRmode	Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910	arXiv:2104.14417 submitted to	<u>Eng</u> , <u>Jap</u> Apr 30, 2021
LV	O2H0	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo	arXiv: ApJ 909:218 (2021)	Eng , Jap Mar 19, 2021
LVK	O3StochDirectional	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO's and Advanced Virgo's first three observing runs	arXiv:2103.08520 submitted to	<u>Eng</u> , <u>Jap</u> Mar 16, 2021
LVK	O3StochIso	Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run	arXiv:2101.12130 submitted to PRD	Eng, <u>Jap</u> Feb 01, 2021
LVK	O3CosmicString	Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run	arXiv:2101.12248 PRL126, 241102 (2021)	Eng, <u>Jap</u> Feb 01, 2021
LVK	PSR J0537-6910	Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910	arXiv:2012.12926 ApJL 913 L27 (2021)	Eng, Jap Dec 25, 2020

LVK-EPO (Education & Public Outreach) provides Science Summaries

Intro to LIGO & Gravitational Waves Science Summaries Popular Articles Frequently Asked

SUMMARIES OF LSC/LVK SCIENTIFIC PUBLICATIONS

For each of our new research articles, we feature a summary of the paper's key points written for the general public. Simply click on any of the titles for an online version, or on the '[flyer]' links for a downloadable file in PDF format. Translations into several languages are also available for some of these summaries. Where not noted separately, translations can be accessed through their language acronyms (e.g. 'es' for Spanish, also see details in the sidebar) or from the top of the English online versions. Most recent papers, and their summaries, are written together by the LIGO Scientific Collaboration (LSC), the Virgo Collaboration and the KAGRA Collaboration, forming the LVK collaboration.

LATEST DETECTIONS

GWTC-3	GWTC-3, a third catalog of gravitational-wave detections [flyer]
(Nov 07, 2021)	Also in: Chinese (simplified) [zh-Hans] Chinese (traditional) [zh-Hant] Fre

Also in: Chinese (simplified) [zh-Hans] | Chinese (traditional) [zh-Hant] | French [fr] | German [de] | Japanese [ja] | Polish [pl] | Spanish [es]

Companion papers: (also available in some other languages):

- Uncovering the population properties of black holes and neutron stars following LIGO and Virgo's third observing run [flyer] [[r]] [[a]] [pl]] [zh-Hant]
- Improving measurements of the cosmic expansion with gravitational waves [flyer] | [fr]
 [e]] [[a] [zh-Hant]
- Searching for quiet gravitational waves produced by gamma-ray bursts in O3b [flyer] | [fr] [zh-Hant]

https://www.ligo.org/science/outreach.php

Hisaaki Shinkai (Osaka Institute of Technology) JGRG30 (online) December 8, 2021

1. Auto-Regressive model (Method, general) I

Fitting data with linear func. $= a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$ x_n M $= \sum a_j x_{n-j} + \varepsilon$ j=1

e.g.
$$x_n = Ae^{-rn\Delta t} \cos(\omega n\Delta t)$$

 $Z_1 = e^{-(r-j\omega)\Delta t}$
 $Z_2 = e^{-(r+j\omega)\Delta t}$ \longrightarrow $x_n = \frac{A}{2}(Z_1^n + Z_2^n) = (Z_1 + Z_2)x_{n-1} - Z_1Z_2x_{n-2}$

can be applied also to noisy data by adjusting M

1. Auto-Regressive model (Method, general) II

- find a_j (Burg method)
- find *M* (FPE final prediction error method)
- re-construct wave signal from fitted function
- apply FFT with arbitrary precision.

Auto-Regressive model vs Short FFT

The order *M* can be fixed at $2 \sim 8$.

Even for short segment, AR model shows precise powerspectrum.

freq. [mock data, SNR=40, inspiral part]

真貝 寿明 (大阪工大) 2019/09/20 物理学会 @ 山形大学

1. Auto-Regressive model (Method, general) III

Fitting data with linear func.

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$$

$$= \sum_{j=1}^M a_j x_{n-j} + \varepsilon$$

- find a_j (Burg method)
- find *M* (FPE final prediction error method)
- re-construct wave signal from fitted function
- apply FFT with arbitrary precision.

characteristic eq.
$$f(z) = 1 - \sum_{j=1}^M a_j z^j = 0$$
 $|z_k|$ says amplitude,

 $\arg(z_k)$ says frequency.

Summary & Outlook

自己回帰モデル x(t)

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$$
$$= \sum_{j=1}^M a_j x_{n-j} + \varepsilon$$

短いデータ (~ 60 pts) に対しても精度よく周波数・減衰率を特定できる. シグナルを見つけるのにテンプレートは不要.

LIGO/Virgo の O1/O2イベントデータに適用,リングダウン部分の抽出を試みた. SN比が高ければ,独立にリングダウン部分が取り出せそうだ.

★ノイズ除去の方法や,他の方法と組み合わせ,より精密な周波数特定法を検討中. ★higher modesの検出へ,BHの特長量の特定へ,相対論検証へ. ★テンプレートを使わない方法は,今後,未知の重力波シグナルの候補検出に

役立つかも.

GW observatory plans in space

http://gwplotter.com

Gravitational Wave Detectors and Sources

岩手大集中講義 現代物理学1(後半)「相対性理論」 2022/2 真貝寿明(大阪工業大学)

GW observatory plans in space

重力波宇宙干渉計LISA(リサ) ESA予算承認 2017/6/20 Laser Interferometer Space Antenna

2034年に打ち上げ予定 250万kmの腕の長さ 地球の公転軌道のL4 低周波数帯(mHzからHz帯)

重力波宇宙干渉計DECIGO(ディサイゴ)

Deci-hertz Interferometer Gravitational wave Observatory

1000kmの腕の長さ 低周波数帯(deciHzからHz帯)

宇宙全体スケールで 巨大ブラックホール連星合体の 重力波が検出できる
銀河中心の超巨大ブラックホール 形成過程がわかる
宇宙の膨張速度がわかる

周波数[Hz]

宇宙空間光格子時計ネットワーク INO

Interplanetary Network of Optical Lattice Clocks

宇宙全体スケールで 巨大ブラックホール連星合体の 重力波が検出できる

伊能忠敬

江戸時代,日本中で

精密な測量をして地図を作成

「数理科学」2018-12 「科学」2017-12

Int. J. Mod. Phys. D 28 (2019) 1940002 <u>arXiv:1809.10317</u>

BH連星合体から銀河中心SMBHの形成シナリオを決める

★BH連星合体が繰り返されて,SMBHが形成されると考える ★1つの銀河にいくつBH連星合体があるかを数える

★宇宙にいくつ銀河があるかを数える

★LIGOやKAGRAの検出器感度で,1年にいくつ観測できるのか予想する

Figure 5. Number density of BHs per galaxy as a function of BH mass for different total mass of galaxies $M_{\text{galaxy}} = 10^9 M_{\odot}, \dots, 10^{12} M_{\odot}$.

Figure 6. Cumulative distribution function of the number of BH mergers $N_{\text{merger}}(M_{\text{BH}})$ as a function of the redshift z. N_{merger} is expressed with binned one, of which we binned 20 for one order in M_{BH} .

THE ASTROPHYSICAL JOURNAL, 835:276 (8pp), 2017 February 1 © 2017. The American Astronomical Society. All rights reserved. doi:10.3847/1538-4357/835/2/276

Gravitational Waves from Merging Intermediate-mass Black Holes. II. Event Rates at Ground-based Detectors

Hisa-aki Shinkai¹, Nobuyuki Kanda², and Toshikazu Ebisuzaki³

BH連星合体から銀河中心SMBHの形成シナリオを決める

- ★BH連星合体が繰り返されて、SMBHが形成されると考える
- ★1つの銀河にいくつBH連星合体があるかを数える
- ★宇宙にいくつ銀河があるかを数える
- ★LIGOやKAGRAの検出器感度で、1年にいくつ観測できるのか予想する

THE ASTROPHYSICAL JOURNAL, 835:276 (8pp), 2017 February 1 © 2017. The American Astronomical Society. All rights reserved. doi:10.3847/1538-4357/835/2/276

Gravitational Waves from Merging Intermediate-mass Black Holes. II. Event Rates at Ground-based Detectors

Hisa-aki Shinkai¹, Nobuyuki Kanda², and Toshikazu Ebisuzaki³

Event Rates at bKAGRA/aLIGO

	$R/(Gnc^{-3} vr^{-1})$			
Mass distribution	PyCBC	GstLAL	Combined	
	Event bas	ed		
GW150914	$3.2^{+8.3}_{-2.7}$	$3.6^{+9.1}_{-3.0}$	$3.4^{+8.8}_{-2.8}$	
LVT151012	$9.2^{+30.3}_{-8.5}$	$9.2^{+31.4}_{-85}$	$9.1^{+31.0}_{-8.5}$	
GW151226	35^{+92}_{-29}	37^{+94}_{-31}	36^{+95}_{-30}	
All	53_{-40}^{+100}	56_{-42}^{+105}	55_{-41}^{+103}	
	Astrophysi	cal		
Flat in log mass	31_{-21}^{+43}	29_{-21}^{+43}	31^{+42}_{-21}	
Power law (-2.35)	100_{-69}^{+136}	94_{-66}^{+137}	97^{+135}_{-67}	

LIGO group PRX6(2016)041015

Shinkai+ ApJ 835(2017)276

Kinugawa+ MNRAS456(2015)1093

重力波観測の将来計画

Cosmic Explorer 40km L-shape

真貝寿明 (大阪工業大学)

2018/10 Fermi衛星チーム, ガンマ線バースト天体 カタログで21星座を命名

https://fermi.gsfc.nasa.gov/science/constellations/

000000

0

0

Fermi Bubbles Colosseum Eiffel Tower Einstein Fermi Satellite **Golden Gate** The Little Prince Mjolnir Mount Fuji Castle Obelisk **Pharos Radio Telescope** Saturn V Rocket Schrödinger's Cat Starship Enterprise TARDIS

Black Widow Spider

http://www.virgo-gw.eu/skymap.html

202x/xx LIGO/Virgo/KAGRAチーム, 重力波天体カタログで108星座を命名 重力波源が特定されたのは、まだ1つ.

しかし 2020年12月から始まる観測で, 週に数回, BH-BH? 月に1回, NS-NS?

> 宇宙空間での観測がはじまれば, 1日に10回, BH-BH ??