
確率・	統計	(真見	₹)
第1回	中間:	テスト	∙ Ma

	_曜日	時限	学科
生 悉 是		氏名	<u>z</u>

- 【重要】解答はすべて解答用紙に記入せよ.答えだけではなく,導出の過程も記すこと. 解答順は自由.スペースが足りなければ,裏面を用いよ. 成績判定時には全体の 10/100 のウエイトで算入.
- $\boxed{1}$ 下図のようなルービックキューブ状の立体経路がある (描いていない裏側や内部にも経路がある). 頂点 A から対角の頂点 B まで行く最短経路は何通りあるか. (10 点)

- ② A, B, C の 3 人がこの順に繰り返してサイコロ 2 つを投げ、出た目の和が 7 になる最初の人を勝ちとする。勝者が出るまで何巡もする。A, B, C それぞれが勝つ確率 P_A, P_B, P_C を求めよ。(10 点)
- ③ 10 分の 1 の確率で当選する福引券がある. 最低何枚あると、当選確率が 9 割を超えるか. $\log_{10}0.9 = -0.04575$ を用いて良い. (10 点)
- [4] コイン 3 枚を同時に投げて「表の出る枚数 \times 1000 円」としてお年玉の額を決めることにした。期待値はいくらか。 $(10 \, \text{点})$
- [5] 少年が嘘つきの場合(事象 $\bf A$),「オオカミがいる」と言ったとき,オオカミが発見される(事象 $\bf B$)確率を 10%,発見できない(事象 $\bf B$)確率を 90%とする.少年が嘘つきでない場合(事象 $\bf A$),「オオカミがいる」と言ったとき,オオカミが発見される確率を 70%,発見できない確率を 30%とする.事前確率として,少年が嘘つきの可能性を 10%とする.(15 点)
 - (1) 1 度目,少年が「オオカミがいる」と言ったが,オオカミは発見されなかった.少年が嘘つきと考えられる事後確率 $P(\mathbf{A}|\overline{\mathbf{B}})$ を求めよ.引き続いて 2 度目,少年が「オオカミがいる」と言ったが,オオカミは発見されなかった.少年が嘘つきと考えられる事後確率を求めよ.
 - (2) 1度目,少年が「オオカミがいる」と言い,オオカミが発見された.少年が嘘つきと考えられる事後確率を求めよ.

	オオカミ	オオカミ
	発見	発見できない
嘘つきの場合	10 %	90 %
正直者の場合	70 %	30~%

[6] 2019 年, 厚生労働省の「毎月勤労統計」不正処理が発覚した. 統計学的に何が問題だったのか, 説明せよ. (5点)