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John A. Wheeler
(July 9, 1911 - April 13, 2008)
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John Wheeler believed that the names given to concepts or
to descriptions of an idea strongly influence how we think
about concepts and ideas, even how we work on them and
build on them. In short, the word inspires the deed. Accordingly,
Wheeler spent many hours (often soaking in a warm bathtub)
searching for the most apt terms. Here, in rough chronological
order, are some of his coinages:

S-Matrix the scattering operator in quantum mechanics

Sum over histories Richard Feynman’s path-integral method
Moderator the material that slows neutrons in a nuclear
reactor

Stellarator a plasma magnetic confinement device

Planck length, Planck time the scales at which quantum grav-
ity dominates

Geon an object made from waves bound together by their
energy’s gravity

Mass without mass gravitating object containing no massive
particles

Charge without charge wormholes as sources and sinks of
electric field lines

Wormhole a topological "handle” in the geometry of curved
space

» Quantum foam quantum fluctuations in the geometry of
spacetime

Black hole* the object formed by implosion of a sufficiently
massive star

A black hole has no hair a classical black hole’s properties are
determined by only its mass, spin angular momentum, and
charge

Space tells matter how to move and matter tells space how
to curve the summarized content of general relativity

Law without law** emergence of law from random processes
It from bit** a physical world built of information units
Mutability** susceptibility of physical law to evolution and
change

Observer-participancy*® influence of the observer on reality
The universe as a self-excited circuit** shaping the past from
the present

A single quantum cannot be cloned a theorem that puts a
limit on quantum amplifiers

* The phrase *black hole” appears to have been used first, for
the object formed by stellar implosion, by one or more non-
physicists shortly after the 1963 discovery of quasars, but it did
not stick. Wheeler recalls adopting it in 1968 after somebody at
a lecture he was giving shouted it out as a suggestion, and in
his hands it was quickly adopted worldwide.

**An influential, speculative idea due to Wheeler.
[ -

Box 1. Wheeler coinages

i

TC %7&

S-Matrix,

Sum over histories,
Planck length,
Planck time,
Wormhole,

Black Hole,
Geon,

Quantum foam,
A BH has no hair,
law without law,
it from bit, ...

Physics Today, 2009-4

Ma

Charge
Angular momentum

Figure 3. John Wheeler’s
diagram of the universe as

a self-excited circuit: Start-

ing small (thin part of *U*

at upper right), the universe
grows (loop of “U”) and in

time gives rise to observer-
participancy (upper left), which
in turn imparts “tangible reality”
to even the earliest moments
of the universe. Compare this
notion with the delayed-choice
experiment of figure 2.

Figure 1. Agur
hole in action. /
are washead out
lieved to be uni
tric charge, and
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Initial Data (Spheroid, Ring)

Yamada & HS, CQG 27 (2010) 045012
Evolution (Spheroid)

Yamada & HS, PRD 83 (2011) 064006
Evolution (Ring)

Yamada & HS, in preparation.
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Brane-World model

Brane (4-dim, t,Xx,y,z) Another Brane?

. i

(with cosmological constant?)

5th dimension S5th dimension

-~ {onnnnnn s m— >

all matter and forces are trapped
in 4-dimensional space-time

/

but only gravitational force propagates
higher dimensional space-time




1. Motivation and Goal
Higher-Dim Black Holes have Rich Structures

Brane-World models give new viewpoints to gravity
and cosmology

LHC experiments will (or will not) reveal Higher-Dim
BHs in near future

4-dim BH : horizon is S/2,
stable solutions
Schwarzschild --- Birkoff theorem (M)
Kerr --- uniqueness theorem (M, J)



1. Motivation and Goal
Higher-Dim Black Holes have Rich Structures

4-dim BHs Higher-dim BHs :
Schwarzschild — Tangherlini
--- unique & stable
Kerr —> Myers-Perry
--- maybe unstable in higher J

| : " black string
Black Objects black ring (Emparan-Reall)

black Saturn
di-rings, orthogonal di-rings, ...

< >




1. Motivation and Goal

Higher-Dim Black Holes have Rich Structures

black hole

"Black Objects" black string
black ring

black Saturn

di-rings, orthogonal di-rings ...
Uniqgueness (only in spherical sym.)
Stability?
Formation Process?
Dynamical Features? ...

N>

No Hair Conjecture?
Cosmic Censorship?
Hoop Conjecture?

2
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naked singularity vs cosmic censorship conjecture

PIULWFHREREE R. Penrose (1969)

DENAEY(CHIBRE5ZE T, IR CEBRYIEAREDN S EHRL, I8
BCESEIME L S OBHOENARERICK OTHRET DINTDRE
KU, TZ2VIR=—ILOPICRE=N, RADGRABREZENZERDIL
75‘?%7'32\;\ ! TQM » £ USK -1:,1Ll:‘r'r‘.,*l?,f"r..’*llh

MBEDRERIE, BATEESARL,
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hoop conjecture

K. Thorne (1972)

R. Penrose (1969)
Penrose inequality

A < 167mm?



Plan of the talk

2. Numerical method

3. Spheroidal matter collapse
Initial data analysis
Evolutions

4. Ring matter collapse
Initial data analysis
Evolutions

5. Hoop Conjecture?




2. Numerical method A. Abwv

| The 3+1 decomposition of space-time: The ADM formulation

[1 ] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research,

ed. by L. Witten, (Wiley, New York, 1962).
[2 ] JW. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

Dynamics of Space-time = Foliation of Hypersurface

e Evolution of £ =const. hypersurface X(t).

ds* = gudx*dz”, (u,v=0,1,2,3) time direction
on X(t)... d* = ~;dz'da’, (2,7 = 1,2,3)

e [he unit normal vector of the slices, n*.

ny = {—&,D,U?[}} Z: Initial 3-dimensional Surface

= g"n, = (1/a,—fF /)
e The lapse function, . The shift vector, 3.

ds® = —a’dt?® + v;;(dz’ + Bidt)(da? + (dt)




The decomposed metric:

ds* = —a’dt® + ;;(dz’ + F'dt)(dx? + Fdt)
— (_QQ T .55,55)611'%2 + Qﬁldfd.‘li — "hd“ﬁdffj

o —1/a? 37 /o
) g = I,ﬁi/{]fg "":(ij L .ﬁi:ﬁj/ﬂig

where « and (3; are defined as a = 1/v/—g¢™,  3; = go;.

- —CEQ + ,;‘3,{_,5'! ﬁj
Guv = ;33 Yii

e [ he unit normal vector of the slices, n*.

shift vector,
n‘“’ - (_&.? 0: 0 0) , mmm‘ Bl dt coordinate constant line
nt = g"n, = (1/a, —f'/0) 5 =
>(t+dt) /
e The lapse function, a. lapse function, ¢ — ¢ dit

e The shift vector, 3. / A 2(t) /




2. Numerical method A. ADM (4-dim)

he Standard ADM formulation (aka York 1978):

J.W. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

he fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic curvature. The three-

ypersurface X is foliated with gauge functions, («, 3), the lapse and shift vector.

e The evolution equations:

Orij = —2aK;; + Dif5; + D;[5;,
8tKZ-j = (B)Rij —+ OZKKZ']' — QOzKikKkj — D,L'DjOz

(D" Ky + (D;8") Ky + B¥ DKy — 87GafSi; + (1/2)7i(pr — trS)}, (2)

where K = K?;, and <3)Rij and D; denote three-dimensional Ricci curvature, and a covariant derivative
on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM .— OR 4 K? — Kinij — 2N — 2Kkp = 0,

momentum constr. /\/l;leM = DjKji — DK —rJ' '~ 0,

where GR =0) Ri..




2. Numerical method A. ADM (N-dim)

The Standard ADM formulation in N 4+ 1-dim.
cf. H. Shinkai and G. Yoneda, Gen. Rel. Grav. 36, 1931 (2004)

The fundamental dynamical variables are (7;;, K;;), the three-metric and extrinsic curvature. The three-

hypersurface X is foliated with gauge functions, (o, 3), the lapse and shift vector.

e [ he evolution equations:

Opvij = —2aK;; + DifBi + D;j, (1)

(%Kij = Ot(N)RZ'j + OéKKij — QQngKZ‘g — DZ’DJ'CV
1 2¢y
+6°(DiKj) + (D;5°) K + (Dif*) Kyj — ko (5 - m%‘jT> -y (2)
where K = K*;, and (N)Rz-j and D; denote N-dimensional Ricci curvature, and a covariant derivative
on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM .— (Np 4 K2 Kinij — 2N — 2kp = 0,

momentum constr. ./\/lfDM ; DjKji — D,;K —rJ' '~ 0,

where (VR =) Rpi..




2. Numerical method B. procedures

Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation

W Preparation of the Initial Data
& Assume the background metric
& Solve the constraint equations

B Time Evolution time direction

do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy Z: Initial 3-dimensional Surface

& Extract physical quantities
end do




2. Numerical method B. procedures

Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation

B Preparation of the Initial Data

& Assume the background metric /

& Solve the constraint equations

B Time Evolution

Need to solve elliptic PDEs
-- Conformal approach
-- Thin-Sandwich approach

singularity avoidance,
simplify the system,
GW extraction, ...

do time=1, time_end /

& Specify the slicing conditions
¢ Evolve the variables =
& Check the accuracy

Robust formulation ?

-- modified ADM

-- hyperbolization

-- asymptotically constrained

& Extract physical quantities
end do




2. Numerical method c. initial data (3-dim)

Conformal approach for solving constraints (York-()Murchadha, 1974)
N.OMurchadha and J.W.York Jr., Phys. Rev. D 10, 428 (1974)

One way to set up (i, K;j, p, J') so as to satisfy the constraints:

1. Specify metric components 4;;, tri, AZT and matter distribution p, .J in the conformal frame.
2. Solve the next equations for (i), W)

8AY = Ryp — (A A" 4+ [(2/3)(trK)* — 2A]9° — 167G pnp> "
AW + (1/3)D'D,W* + BT, W* = (2/3)0DitrK + &G J'
where A — A+ DIWi + DIW — (2/3)30 Dk,
3. Apply the inverse conformal transformation and get the metric and matter components ;;, K;;, p, J°

in the physical frame:
Yij = ¢4§’z‘j>
Kij = 2 [ALT + (IW);5] + (1/3)0 tr K,
p=1v"p,
Ji — w—l()ji




2. Numerical method c. initial data (N-dim)

Conformal approach for solving constraints in (/N + 1)-dim.
T. Torii and H. Shinkai, Phys. Rev. D 78, 084037 (2008)

One way to set up (7ij, Kyj, p, J') so as to satisfy the constraints:

AN

L1 and matter distribution p, J in the conformal frame.

1. Specify metric components 7;;, trk, Aw ,

2. Solve the next equations for (), W?)
A(N
N

JR— 1 A A A A A ~
5 JAg = Ry — e 1O (R gy R 4 9ekp P — 20
A N—=24o a8 0k F k ~1 Natirb L AbTira 2 ab Py kg, T
AWZ + TDszW + RZkW + 7# (6 + 2) (D |44 + D°W*® — N’y DkW )’sz'Daw
N - ]. 4 A A A ~ N
(- —) (DK + D;K| = g2¥WN-2-ta ], 2
3. Apply the inverse conformal transformation and get the metric and matter components v;;, K;;, p, J'

in the physical frame:

Yij = WY (N_Q)%'?

N N 1 , o\
Kij = ¢ [AG + (W), + NW Y245t K
p=1"p,
Ji _ w—qji




2. Numerical method bD. Horizon Finder

Apparent Horizon

BlackHole
trapped region 0 <0

apparent horizon 0=0
= outermost marginal surface
of trapped region

Null vectors

{ k% = (1/v/2)(n® + %)
(= (1/v2)(n* — 7

Projection operator onto .S

P = 0% + kY%, + 0Ky,

= 0% +nny — s'sy
Extrinsic curvature along k¢

Rap = _PCanbkC;d
= (1/V2)(=Vesg + Kea) P o P,

AH <= expansion 0 =10
— —V2:', =k"=0
= V5" — K+ Kus"s" =0

In spherically sym. spacetime,

di* = 'a’ldy’ + f7(x) Y]
_ b ody i 2




3. Spheroidal matter collapse
A. Initial data construction

- time symmetric, asymptotically flat
- conformal flat
- non-rotating homogeneous dust

- solve the Hamiltonian constraint eq. 512”2 grids

- Apparent Horizon Search
- Define Hoop and check the Hoop Conjecture

ds* = (R, 2)? [dR* + R*(dy? + sin® p1dyps) + dz°]

) y P2 = tan ! (Q) :

—47-Gsp

:‘LL

)
(L'Q = .y2

R= /a2 +y2+22, ¢ =tan"’ (

02 2 Jr AR}
(t,/+ (l/+( U _

JR2 R OR 922




3. Spheroidal matter collapse
B. Initial data sequence

cf. (3-dim.) Nakamura-Shapiro-Teukolsky (1988)

Class. Quantum Grav. 27 (2010) 045012 Y Yamada and H Shinkai

(b)

4+1 3. , ‘ 3.0
initial data | |

w il | o
00 05 10 15 20 25 30 00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
R/r R/r R/r

ontour Plot of the Kretchmann invariant, R,p.g

Izabcd



3. Spheroidal matter collapse
C. Evolution method

- ADM 2+1 Double Axisym Cartoon
- 13072 x 272 grids

- lapse function: Maximal slicing condition
- shift vectors: Minimum distortion condition
- asymptotically flat

- Collisionless Particles (5000)
- the same total mass
- no rotation

- Apparent Horizon Search



ADM evolution eqgs. (SD)

. (_az e @cﬂk @')
diw T B i

07i;
6’75] = Waldl,. 4,0, - DeG
0K, |
6‘753 7 &((4)Rz‘j S R S 20K K
1
— 1271'204(5@']' e g%jj (p—5))

o7 Dz'DjCV %3 Diﬁmej A Djﬁmez’ P ﬁmDmKij

2nd-order differential scheme
lterative Crank-Nicolson method
Courant factor 0.2



slicing conditions (lapse) ¢

Maximal slicing condition
K=0er@tih 1

i
ox*
" singularity avoidance '

BC at far region (o — 1) = collsi s = (a—1)r*] =0.

8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

z/M

FIG. 4: The snapshots of the hypersurfaces on the z-axis in the proper-time versus coordinate diagram: (a) model 5DSj3, (b)
model 5DS4, and (c) model 4D4. The upper most hypersurface is the final data in numerical evolution. We also mark the matter
surface and the location of AH if exist. The ranges with Z > 10 are marked with bold lines and peak value of 7 express by
asterisks.




slicing conditions (shift) #

Minimal strain condition

1
O — NI " el s §D(uﬁy), where t* = an” + G*

Dj@ij =0 = Aﬁz S Dszﬁj o0 Rijﬁj e QDJ (CVKZJ)
: %,
BC at far region gr° =const. & ——[8r°] =0.

anti grid-stretching"

"betat2.5468351 .txt"

"beta/betat1.6719496.txt"




matter = particles

diis o detida” s 5000 particles
dr2 e PPV [N Runge-Kutta method

T’ij == Zm n(A) U'I(LA) Ul(/A)
A

p = Zm TL(A)(OZU(()A))Q
A

Sij = )M n(ayti(ayli(a)
A




matter = particles cf. SPH

smoothing kernel
exp[—(z — z;)"/h?]




matter

particles

&
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=
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S
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S
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Cartoon method

treating symmetry with Cartesian coord.
Alcubierre, Brandt, Bruegmann, Holz, Seidel, Takahashi, Thornburg, gr-gc/9908012

Axisymmetric system on z

cylindrical coord.

r = pCoSs @
y =psing
oy

Cartesian coord.
(@, U, 2)




Cartoon method (4-dim.)

treating symmetry with Cartesian coord.
Alcubierre, Brandt, Bruegmann, Holz, Seidel, Takahashi, Thornburg, gr-gc/9908012

Axisymmetric system on z

OIS IETN (1, y, 2) = U(p, 0, 2)

for vector
Tz(a:’y’ z) — Tz(p) O’ z)

T*(z,y,2) = (z/p)T"(p,0,2) — (y/p)T¥(p, 0, 2)

TY(z,y,2) = (y/p)T"(p,0,2) + (z/p)T¥(p, 0, 2)
for 2-rank sym. tensor

S*(z,y,2) = 5*(p,0, 2)

S¥(z,y,z) = (z/p)S*(p,0,2) — (y/p)S*(p,0, 2)
S¥(z,y,2z) = (y/p)S™(p,0,2) + (z/p)S*(p,0, 2)

§*%(z,y,2) = (2/p)*S™*(p,0,2) + (y/p)*S* (p,0, z) — (2zy/p°)S™(p, 0, 2)
S¥(z,y,2) = (y/p)*S™*(p, 0,2) + (z/p)*S"(p, 0, 2) + (2zy/p*)S*¥ (p, 0, 2)

§™(z,y,2z) = (zy/p)[S**(p,0,2) — §*(p,0,2)] + [(z* — ")/ "] 5™ (p, 0, 2)



Cartoon method (5-dim.)

treating symmetry with Cartesian coord.
Shibata, Yoshino, PRD 80 (2009) 084025

SO(3) sym. systemon (z =y = 2z, w)

for scalar

U(z,y, z,w) =¥(r,0,0,w)

for vector T*(z,y,2z,w) = (z/r)T*(r,0,0,w)
TY(z,y,z,w) = (y/r)T*(r,0,0,w)

T*(z,y, z,w) = (z/r)T*(r,0,0,w)
(z,y,z,w) =T"(r,0,0,w)

S¥(x,y, z,w) = S*(r,0,0,w)
for 2-rank sym. tensor ST (g, y, z,w) = (z/r)S=(r, 0,0, w)

SV z,y, z,w) = (y/r)S™(r,0,0,w)
S*¥(z,y, z,w) = (z/r)S**(r,0,0,w)

S*(z,y, z,w) = (z*/r*)S%*(r,0,0,w) + (1 — z*/r*) S¥¥(r,0,0,w)

+ (
SY¥(z,y, z,w) = (y 2/r2)S"(r 0,0,w) + (1 - y2/r2) S¥¥(r,0,0,w)
S*#(z,y, z,w) = (2% /r*)S*(r,0,0,w) + (1 — 2*/r*) §¥¥(r,0, 0, w)
SV (z,y, z,w) = (yz/r*)[S™ — S¥¥](r,0,0,w)
S*(z,y,2,w) = (2z/r°)[S™* — Syy](f‘, 0,0, w)




3. Spheroidal matter collapse
C. Evolution examples (4D, ST1991)

VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991

Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

"'11r-~-l

t/M=0 1 b | FI1G. 1. Snapshots of the particle positions at initial and late
| ' times for prolate collapse. The positions (in units of M) are
projected onto a meridional plane. Initially the semimajor axis
of the spheroid is 2M and the eccentricity is 0.9. The collapse
proceeds monhomologously and terminates with the formation
of a spindle singularity on the axis. However, an apparent hor-
izon (dashed line) forms to cover the singularity. At ¢/M =77
its area is A/16xM * =098, close to the asymptotic theoretical
limit of 1. Its polar and equatorial circumferences at that time
arc Cpli/azM =1.03 and CXM/axM =091. At later times
these circumferences become equal and approach the expected
theoretical value 1. The minimum exterior polar circumfer-
ence is shown by a dotted line when it does not coincide with
the matter surface. Likewise, the minimum equatorial cir-
cumference, which is a circle, is indicated by a solid dot. Here
CR"/4xM =0.59 and CRL/4xM =0.99. The formation of a
black hole is thus consistent with the hoop conjecture.

/M = r’?ﬂ.

15 Apparent Horizon |
[ appears

FIG. 4. Profile of 7 in a meridional plane for the collapse
shown in Fig. 2. For the case of 32 angular zones shown here,
the peak value of [ is 24/M * and occurs on the axis just outside

; the matter.
©
Equator Equator
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Whereas Stephen W. Hawking firmly belleves that /1\ ./ 7
naked singularities are an anathema and should

be prohibited by the laws of classical physics,

And whereas John Preskill and Kip Thorne r*%@&i-, < /1\\ (j:tl:% _:_REI):\E\IJ (: (ﬁ j T

regard naked singularities as quantum

gravitational objects that might exist unclothed A
by horizons, for all the Universe to see, A N | | é n z L \ % _|

l
I"I'l

Therefore Hawking offers, and Preskil/Thorne
accept, a wager with odds of 100 pounds stirling
to 50 pounds stirling, that when any form of
classical matter or fieid that is incapable of
becoming singular In flat spacetime Is coupled to

general relativity via the classical Einstein \ N o
uations, the result can never be a naked / — l/ # ) L
q v, LA

singularity.

cover the winner’s nakedness. The clothing is to
be embroidered with a suitable concessionary
message.

® 0 e KE SR AEZEB O BN ZBHEC
Stephen W. Hawking John P. Preskill & Kip S. Thorne %z% : t

Pasadena, California, 24 September 1991

The loser will reward the winner with clothing to I. l D y,

1991F 9 A24
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M—F>D X
Whereas Stephen W. Hawking (having lost a previous bet

L
on this subject by not demanding genericity) still firmly be- Ju ~ A2 -
lieves that naked singularities are an anathema and should r ﬂx H/\J 78\*}] ,HE 7K1t|:? ‘; ’ *%O)%
be prohibited by the laws of classical physics,

And whereas John Preskill and Kip Thorne (having won the g,ﬁ\ (i%é: L/ 7‘3: L \J
previous bet) still regard naked singularities as quantum

gravitational objects that might exist, unclothed by hori-

zons, for all the Universe to see,

Therefore Hawking offers, and Preskill/ Thorne accept, a

wager that °
When any form of classical matter or field that is inca- \/ —\J 7 I./R #) I/
pable of becoming singular in flat spacetime is coupled 2
to general relativity via the classical Finstein equations,

then rE D A= %
A dynamical evolution from generic initial conditions (i.e., 13: J

from an open set of initial data) can never produce a naked
singularity (a past-incomplete null geodesic from 1, ).

The loser will reward the winner with clothing to cover the
winner's nakedness. The clothing is to be embroidered with

a suitable, truly concessionary message.

W xR EE S BNERECS

Jo. Py KA

Stepﬁe . Hawking John P. Preskill & Kip S. fhome 2, % O)%fli% (: (j:’a\i:l t%g@@ % K
Pasadena, California, 5 February 1997 N -
S ANd L&,

1997F2A5




heroidal matter collapse
Evolution examples (5D, ours)

FIG. 2: Snapshots of 5D axisymmetric evolution with the ini-
tinl matter distribution of b/M i [Fig.(al) and (a2); model
SDS3 in Table I} and 10 [Fig.(bl) and (b2); model 5D84]. We
see the apparent horizon (AH) is formed at the coordinate
time ¢/M = 33 for the former model and the area of AH
MCTeases, while AH 15 not observed for the latter model up

P

to the time t/M 15.4 when our code stops due to the 11\[‘(1'
curvature. The big circle indicates the location of the max-

LT

imum Kretschmann invariant 7. at the final time at each
evolution. Number of particles are reduced to 1/10 for figures.

* tM = 3.3 (matter)
"M =33 (AH)

* M =55 (matter)
tM=55(AH)

FIG. 3: Kretschmann invariant 7 for model 5DS§ at t/M =
15.4. The maximum is O(1000), and its location is on z-axis,
just outside of the matter.




3. Spheroidal matter collapse
Evolution examples (5D, ours)

| tIM~= 3.3 (matter) . 6.0 (matter)
M =33 (AH) t 6.0 (AH)
/M = 5.5 (matter) [ 1 | -
L".\'I =20 (A_Hl

T




3. Spheroidal matter collapse
D. Comparisons 4D vs. 5D

b/M (t =0) 2.50 4.00 6.25 10.00
4D axisym. 4D 4D3 4D~y 4Do

A H-formed no no no

ear = 0.90 towards spindle
ef = O 92 ef = O 89 e =0.92 e =0.96
5D axisym. ' 5DS~y 5DSo

> S0@3) o o

R (x, y, W) earn — 0. 88 eart — 0. 88 towards spheric:
I er = (.82 er = (.84 er = 0.88 ef =0.96

towards spherical towards spindle




3. Spheroidal matter collapse
D. Comparlsons 4D vs. 5D

b/M (t = 0) 2.5( 1.00 10.00

D axisym. |_4 * 3 e 4DA D0
orme no

(a)

e = DU« 0. Y6

| OD collapses
5D axisym. 5DSH 5DSo .
0)  [iormediiiomed} o [ no -- proceed rapidly.

5D double [ f -- fowards spherical.
axisym. [I _ _
-- AH forms in wider ranges.

U(1)xU(1) [ean = 0.86 \u—-'\--\n—-

er = 0. ul’,,- 0.81 o ef = 0.90Q ¢

m—S5DSoatzZ’M =56
5DUSatzZM =53
4Ddat ZM =6.15
mmunS5DSEatzZM =32
*SDUBatzZM =26
4DfatzZM =138

Proper time



4. Ring matter collapse
A. Initial data construction

- time symmetric, asymptotically flat
- conformal flat
- non-rotating homogeneous dust

- solve the Hamiltonian constraint eq. 512”2 grids
- Apparent Horizon Search

both for Ring Horizon and Common Horizon
- Define Hoop and check the Hoop Conjecture

ds® = (X, Z)*(dX* + dZ* + X*d91 + Z*d9»)

X = \/:172 +y2, Z = \/22 + w2, ¥, = tan"* (g), ¥ = tan "} (
.’L‘ 1

; IV I
Xox \"ax) zoz\ 9z



4. Ring matter collapse
A. Apparent Horizon Search, and its Area

p

Common Horizon . 7=

m

2 . 2 o ’
, Trn + Tm aI'm _ 3, . . ,
- 3r,, — = 2— cot(2¢) — —(rmsing

) e » / ll‘
r i’ I m T ™Tm lf/

oY 3( COS ¢ — Ty, SIN @) o =10
()X y m m ()d

+7 cos @)

¢ 7‘./2 £
Ang) — 47r2/0 1,) r COS @SIn @ i’ + r2 do

B 3rm” _on r2 + T’ " TmSINE + Tm COSE  Tm cot €
Tm " Tm Tm COS € + R, T'm
3 oYy 3 O
+—(rmsiné +r (‘osf)— ——(rmcos€ — rsiné) ¥ =0
Y or 0z

AI(3T2) - 47T2 A ¢3(Rc + Tm COS f)’l"m Sinf T';n2 + T?n df




4. Ring matter collapse

B. Initial data sequence
Apparent Horizons Search

Class. Quantum Grav. 27 (2010) 045012 Y Yamada and H Shinkai

Figure 8. Contours of Kretchmann invariant, log,, I, corresponding to figure 7.




4. Ring matter collapse

B. Initial data sequence
Apparent Horizons Search

Class. Quantum Grav. 27 (2010) 045012 Y Yamada and H Shinkai




By the way,

there might not be
a ring horizon in 4D

4D

5D



4. Ring matter collapse
B. Initial data sequence

Class. Quantum Grav. 27 (2010) 045012 Y Yamada and H Shinkai

Area of if evolved,

Apparent Horizon

0.2 i | j j 5 5 |
00 02 04 06 08 1.0 1.2 14 1.6
R /r



4. Ring matter collapse
C. Evolution method

- ADM full 4+1, ADM 2+1 Double Axisym Cartoon
- 33”4 grids, 13072 x 272 grids

- lapse function: Maximal slicing condition
- shift vectors: zero
- asymptotically flat

- Collisionless Particles (5000)
- the same total mass
- no rotation

- Apparent Horizon Search
both for Ring Horizon and Common Horizon



*time evolution of particle

7))
Q
Q.
Q

n S
5 §
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e..u
3
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+ |lapse function at t
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4. Ring matter collapse
D. Evolution examples

=10 No Horizon

t=1.5 Common Horizon t=3.2 Ring Horizon
t=3.8 Common Horizon



Is it possible to escape from origin S5 Y
after the observer watched the ring : . |
ring horizon

horizon? g N
§ | AR

5.0 mmm Ring horizon .0 | we——Common horizon
s Common horizon

g 501 Observer is trapped
/ the Common horizon.
3.0 3.0
2.0 a/
1.0 |
B it

2.0

1.0

0.0 ! ‘ ‘ 0.0 | | |
0.0 0.9 20 4.0 6.0 . j 0.0 2.0 4.0 6.0

X/ M z/ M

The snapshots of the hypersurfaces on the x and z axis
In the propertime versus coordinate diagram.




4. Ring matter collapse
E. Interpretation

Area of

Apparent Horizon expected line

after evolution
If evolved,

—e—common AH

: .—l—rlng A'H

with rotation ?
with perturbation?

-- under investigation.

00 02 04 06 08 10 1.2 14 1.6
R /r




5. Hoop Conjecture
A. Hyper-Hoop conjecture ?

Hoop Conjecture Thorne (1972)

r

Hyper-Hoop Conjecture
lda-Nakao (2002)
Vb3 < GpM

In 5-D, if mass gets compacted
In some area, ....

Penrose (1969)
A < 16w M?



9. Hoop Conjecture Vo < 165G M
B. Spheroidal Cases 2

Define Hyper-Hoop as the surface V5 = ()

2

o+ 2 2 . 2 .
37} Ty + T} T} ..
L 9y + P — | — cot@ — —(r} sin 6
Th Th Th (%
o 2 : : o)
hcosf)—— — —(rpsin@ —rycos ) — | =0
0z OR

7w /2
b SAr’hQ o 7'%7';1 cos 0 df

yper-Hoop Vz(A)

o 9 . 9 )
o 27, _dib_éSBBLOE& fQEQ + g,(rh sin 6

I sg)heroﬁﬂal [brizons.”
- Y 2 . O
i | : . h COS 9),_ + _,(T}l COSO + Th Slne) — | = O
00 40 80 120 160 200 240 OR L 0z

b/a(a=0.1)




5. Hoop Conjecture Vs < 167G M
C. Toroidal Cases 2

V(c) = 47r/ WY \/7‘;,, -+ rhrh cos ¢ do

o+ 2 ) .
. 3rh ré + 7R [7h 2,
Th — — 2rn + cot  — —(rrsin ¢
Th Ik I'h L2
o 2 oY
+7 €08 @) —— — — (T sin ¢ — 77, cos ¢ =0
l 0X L’( ' ' )()Z

\/'r, . rhrh sin ¢ do

. -
7},. + 'k

"I—fyff %-Hz?@p}
b2 rk
\/ '} r/n Q h cos I{ C}

_— 27'}1. _—

r’ 2
tan ¢ + —(rp sin ¢
’ }L L/

(')u

honzons
Ii + r;,. [ Re.+ rpsiné&

— 2Th —
' R, + rpcos &

(7 h Sin &
Th

() )] 9 . . () ()
+rp cos§) P X -+ IL,‘("‘}, sin§ — 1, cos §) 3 Z} =0



6. Summary and Future Plans

5D vs. 4D Spheroidal collapses (no rotating cases)
Collapse rapidly, towards spherical
Formation of Naked Singularity for highly prolate matter

5D Ring collapses (no rotating cases)
no horizon __. common horizon

N\ ring horizon &7

Hyper-Hoop prediction for BH formation

works well for formations of spheroidal black holes
but not for rings.

Future Plans:

include rotation, change slicing conditions
search various horizons,

iInvestigate the stability, formation/decay process,....



1. Motivation

- Brane-World models give new viewpoints to gravity and cosmology.

- LHC experiments will (or will not) reveal Higher-Dim BHs in near future.

- Higher-Dim Black Holes (Black Objects) have Rich Structures.

4-dim BHs : Higher-dim BHs (Black Objects) :

Schwarzschild Schwarzschild-Tangherlini
--- unique & stable
Kerr Myers-Perry
--- maybe unstable in higher J

black strin

black ring (Emparan-Reall)
black Saturn

di-rings, orthogonal di-rings, ...




“Black Objects” black strlng
black rin
black Saturn
di-rings, orthogonal di-rings ...

Outstanding problems

o k:

(! 3 :'"
CENSORED Stable?
A C~4aM BH ’ table’ ¢
CENSORED

{" ! QUns’cable? .

', A ‘Il ‘ 4_
YA \ M §

¥ . 1(

« Cosmlc Censorshlp’? Hoop Conjecture’? Stability?

We plan to mvestlgate numerlcally as foIIowmg

- Formation Process.
- Dynamical Features and stability.




2. Our numerical approach

- Evolution of non-rotating matter configurations in 5D.
- Using the (4 + 1) ADM formalism.

- Express the matter with collisionless particles.

- Search apparent horizons.

- We assume axi-symmetric space-time using the Cartoon method.

Z (w, z)

>

SO@3)sym  Z@wW  y(1)xU() U(1)xU(1)

6,

[

X (x,y]

Spheroidal matter configuration Ring matter configuration




The decomposed metric:

ds? = —a’dt® + v,;(da’ + Fidt)(da? + Fdt)
(—a® + (3" dt* + 2B;dtda’ + ~yi;da'da?

0;

Guv = (

—&'2 + 5{}55 Bj

)ﬁ 9‘“"”'—(

i

where « and [3; are defined as a = 1//—¢™,

—1/a? 37 /o
I.Bi/ﬂ:"g ,_:r_.ij o .ﬁiﬁj/fkﬂ

Bj = goj-

e [ he unit normal vector of the slices, n*.

n, =
n*

e The lapse function, .

e The shift vector, (3.

(—a,0,0,0)

= ¢"n, = (1/a, -3 /{1‘/

surface normal line

shift vector, Bi

‘ ﬁl dt %ﬂordinate constant line

All A_I
lapse ﬁmcﬁ{:rn,__u — 1 dt f

/




The Standard ADM formulation in /N + 1-dim.
cf. H. Shinkai and G. Yoneda, Gen. Rel. Grav. 36, 1931 (2004)

The fundamental dynamical variables are (7;;, K;;), the three-metric and extrinsic curvature. The three-

hypersurface X is foliated with gauge functions, («, ), the lapse and shift vector.

e The evolution equations:

Orvij = —20K;; + Difi + Di;, (1)

8tKZ-j = Oz(N)RZ'j + OZKKZ']' = ZOéKejKig " DZ'DJ'O{
1 20y

+8%(DpKij) + (D" Ky, + (Di8%) Kyj — ke <5i' = m%jT> e m%j/\, (2)

where K = K';, and (N)RZ-]- and D; denote N-dimensional Ricci curvature, and a covariant derivative
on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. 2 e e A o My Kinij — 2N — 2kp = 0,

momentum constr. ./\/lleM — DjKji =) Al

where (MR =) pi..




Initial data construction

We construct sequences of initial data with
- conformally flat, time symmetric, asymptotically flat
- non-rotating homogeneous dust
- Conformal transformation 7i; = ¥*7i;

- The Hamiltonian constraint equation

AAw — —47T2G5,0

boundary condition : ¥ =1 4




Evolution method

- ADM 4+1 Double Axisym Cartoon (1502 x 22 grids)
- asymptotically flat

- Collisionless Particles (5000)
- the same total mass

- Apparent Horizon Search

Spheroidal collapse
- lapse function: Maximal slicing condition
- shift vectors : Minimum strain condition

Ring collapse
- lapse function: K-driver condition
- shift vectors : Zero shift




Evolution equation (ADM 4+1)

2 k y

. Ol - :

metric: guv = ( Bib & > outer boundary ~;; = 0;; + —— B
B; Yij

r2

0vij
ot

8K7;j
ot

= —2aK;; + D;f; + D;p;

- 1
— @((4)Rij R KKW) e QOZKilKlJ - 04/632(51']' =1 §%](,0 ~ 5 S))

—D;Dja+ D" Kpj + D" Ky + 87 D K5

Iterative Crank-Nicolson method
Courant factor 0.2




Coordinate condition

Spheroidal collapse
- lapse function: Maximal slicing condition

Sy 1
K:O(:)(?tK:O(:)Aa:a<Kin”+3/1,0+ 3/65)

boundary condition: (a—1)r* = const < % [(@—1)r?] =0

- shift vectors : Minimum strain condition

il
O NS =l i §D(uﬁy), where t* = an” + g

D049 =0 AB + D'D; % + Ry; 7 = 2D7 (oK)

Ring collapse
- lapse function: K-driver condition
0K oo

> —cK & o eD*a —ea (KijKY + k*(p+ S)) — €8'D; K — ecK

- shift vectors : Zero shift




3. Spheroidal matter collapse (4D)

VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 199]

Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

t/M=0 | FI1G. 1. Snapshots of the particle positions at initial and late
' times for prolate collapse. The positions (in units of M) are
projected onto a meridional plane. Initially the semimajor axis
of the spheroid is 2M and the eccentricity s 0.9. The collapse
proceeds monhomologously and terminates with the formation
of a spindle singularity on the axis. However, an apparent hor-
izon (dashed line) forms to cover the singularity. At /M =7,
its area is A/16xM * =098, close to the asymptotic theoretical
limit of 1. Its polar and equatorial circumferences at that time
arc Cpli/axM =1.03 and CAM/axM =091. At later times

theoretical value 1. The minimum exterior polar circumfer-
ence is shown by a dotted line when it does not coincide with
the matter surface. Likewise, the minimum equatorial cir-
cumference, which is a circle, is indicated by a solid dot. Here
CR"/4xM =0.59 and C2L/4xM =0.99. The formation of a

'1 these circumferences become equal and approach the expected
| black hole is thus consistent with the hoop conjecture.

e ',“._;
t/M=77 1

1

15: Apparent Horizon ]
appears |
1

-h

Axis
T TTTTTTT Y

O
%)

FIG. 4. Profile of 7 in a meridional plane for the collapse
shown in Fig. 2. For the case of 32 angular zones shown here,
the peak value of [ is 24/M * and occurs on the axis just outside

I TR S T S S 3 A X B . L e - ’ ' the matter.

05 { 4 6
Equator Equator

&




3. Spheroidal matter collapse (Yamada and Shinkai, PRD83 (2011) 064006)
SO(3) sym
o] O T T T - We prepare several initial data fixing the total ADM

mass and the eccentricity of configuration, e = 0.9.

UM =0.0

- When the initial matter is highly prolate, AH is not
observed.

- The location of Z... is on z-axis, and just outside of the
matter (This behavior is similar to the Shapiro-Teukolsky’s 4D case).

UM = 3.3 (matler)
----- UM =1313(AH)
= UM=S5.5 (matter) [

—UM=55(AH

2 3 4 5 6
R/M
HFG. 2 (color online). Snapshots of 5D axisymmetric evolution
with the initial matter distribution of b/M = 4 [(al) and (a2);
model 5DSB in Table 1] and 10 [(b1) and (b2); model 5DS48).
We see the apparent honzon (AH) is formed at the coordinate
time /M = 3.3 for the former model and the area of AH
increases, while AH is not observed for the latter model up to
the time /M = 15.4, when our code stops due to the large
curvature. The big circle indicates the location of the maximum FIG. 3: Kretschmann invariant 7 for model 56DS§ at t/M =
Kretschmann invanant J,.  at the final time at each evolution. 15.4. The maximum is O(1000), and its location is on z-axis,
Number of particles are reduced to 1/10 for figures. just outside of the matter.




Eccentricity e = 0.9 b/M (t = 0) G OF 10.00
4D axisym. v 4D (3 / 4Do

AH-formed no no no

ean = 0.90 towards spindle
er =092 e =080 e;=092 e =096

(t=0)

5D axisym. 5DS 5DSo

DO Y DS [
SO(3) AH-formed JAH-formed no no

ean — 0.88 ean — 0.88 towards spherical
e =0.82 e =084 ¢e=088 e =0.96
5D double S5DU« 5DU3 S5DU~y 5DUO

axisym. |AH-formed]AH-formed |AH-formed no

I)XU(l) GAH:. ) eAH:- eAH:.-_,
| er = 0.79 ef = 0.81 er = 0.90 ef = 0.98

towards spherical towards spindle

- Table shows that the results of their evolutions whether we observed AH or not.

- The eccentricity e of the collapsed matter configurations is also shown; ean and er are at the time
of AH formation (if formed), and on the numerically obtained final hypersurface, respectively.

- The 5D collapses proceed towards spherical configurations.




— SDSS M =56
— SDUSatzM =53
DSt zZ/M =615
smmam SPSA at z/M =32
eesses SPDUBatzZM =26
DBatzZM=138

1

5
Proper time

5D collapses

- proceed rapidly.

- towards spherical.
- AH forms in wider

ranges.

- In Figure, we plot 7 at the point which gives Z,,..0n the final hypersurface as a function of proper time.

- We see that 5D collapses are generally proceeding more rapidly than 4D collapses.We also see that
collapses in 5D doubly-axisymmetric space-time is proceeding more slowly than 5D single-axisymmetric

cases.




4. Ring Collapse
- Figure is a snapshot of evolutions for the ring matter of which initial radius are
(a) Re/M = 0.75 and (b) 1.50, respectively.

- Both have no AHs on the initial hypersurface, and we searched both spheroidal and
toroidal horizons simultaneously at every time steps.

- We observe a formation of spheroidal AH (common horizon) in (a), while we see a
formation of toroidal AH (ring horizon) then it switches to common horizon in (b).

:(a) Rc/M = 0.75

=

\

1.5 2.0 2.5 3.0 X 3 2. 2. H . 1.5 2.0 25 3.0

x/M X x/M

:(b) Re/M = 1.50

0.0 i 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 X : s 0.0 0.5 1.0 1




Common horizon (R/M = 0.5)
Ring horizon (R/M = 1.5)
Common horizon (R/M = 1.5)
Ring horizon (R/M = 1.75)
Common horizon (R/M = 1.75)

- dashed line (Ring horizon)
- solid line (Common horizon)

0.0

DS cnt RS Al S St DN w0350 e 3.0 e S S (s R diRS
t/M

- Figure shows the area of horizon formed during ring collapses of which
initial radius are Rc/M = 0.5, 1.5 and 1.75, respectively.

- Area of Ring horizon < Area of Common horizon,

- Both horizon’s area area smoothly connected.




Is it possible to escape from origin S5 Y
after the observer watched the ring : . |
ring horizon

horizon? g N
§ | AR

5.0 mmm Ring horizon .0 | we——Common horizon
s Common horizon

g 501 Observer is trapped
/ the Common horizon.
3.0 3.0
2.0 a/
1.0 |
B it

2.0

1.0

0.0 ! ‘ ‘ 0.0 | | |
0.0 0.9 20 4.0 6.0 . j 0.0 2.0 4.0 6.0

X/ M z/ M

The snapshots of the hypersurfaces on the x and z axis
In the propertime versus coordinate diagram.




Validity of Hyper-Hoop Conjecture

Hoop Conjecture Thorne(1972)

( Horizons (probably) form when and only\ e RN BH
when a mass M gets compacted into a s .
region whose circumference in every
direction is C = 2Ix(2GM/c2) . C <A4nmM

\_

Hyper-Hoop Conjecture

l|da and Nakao, PRD66, 064026 (2002)
Vb3 S GpM ¢ al, PRD71, 104014 (2005)

In 5-D, if mass gets compacted in some area, ....




- To verify the Hyper-Hoop conjecture, we calculate the area of characteristic
closed two-dimensional submanifold of the horizon.

T2
Area(S1) = 477/ \/(frg)2 + r2rsin & /vdE
0

o
Area(Ss) = 477/ \/(r§)2 + 727 cos £4/ydE
0

Area(S3) = 2w /7T \/(r£)2 + r2rsin &\ /yd€
0




Validity of Hyper-Hoop Conjecture 1 <s=*Gum

Case 1. no horizon (Rc/M=0.5 at t=0) -> Common horizon

——Area(S )|

- The ratio less than unity indicates that the validity of the
hyper-hoop conjecture.

—Area(S )|

- The inequality is satisfied when the common horizon is
formed.

Case 2. no horizon -> Ring horizon -> Common horizon
Rch\'l:l.S (t=0) RL_:L\'FI.?S (t=0)

AraalC r ]
e Area(S ) —_—Area(S )

; :,:,e'a(z)/ | —areas,) - The inequality is satisfied when
s L / ‘ " the ring horizon are formed.




5D vs. 4D Spheroidal collapses (no rotating cases)
Collapse rapidly, towards spherical
Formation of Naked Singularity for highly prolate matter

5D Ring collapses (no rotating cases)

no horizon > common horizon

™ ring horizon = =

Future Plans:
include rotation, change slicing conditions
search various horizons,
iInvestigate the stability, formation/decay process, ....




PAIY A VRO
[>22)LY VI K]

*

Schwarzschild (1916)
EkX3FR, BZE TODEinstein 12 D ELZZ %

2GM dr?

cC=r

) ) CthQ = W + ,r‘z(defz 4 81112 QdeQ)

WofzCc &I, -

r=0 THER
= STHR-OTS

r=2GM/c2 THHEFER
= TS5V OmR—J)LDER
K772 52Km, #Ek7R50.9cm




Schwarzschild Black Hole®PenroseX
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Schwarzschild Black Hole®PenroseX
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our universe

wormhole

other
universe

(b) :
our universe . region near earth

region near
the star

Vega
/" rsing
rcos¢

Fig. 1. (a) Embedding diagram for a wormbhole that connects two differ-
ent universes. (b) Embedding diagram for a wormhole that connects two
distant regions of our own universe. Each diagram depicts the geometry of
an equatorial (6 = 7/2) slice through space at a specific moment of time
(t = const). These embedding diagrams are derived quickly in item (b) of
Box 2, and—in a more leisurely fashion—in Sec. 111 C, where they are alsow
discussed. This figure is adapted from Ref. 1, Fig. 31.5.
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Morris, Thorne, Am. J. Phys 56 (1988) 395
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Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion
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We study numerically the stability of the first Morris-Thorne traversible wormhole, shown previously by
Ellis to be a solution for a massless ghost Klein-Gordon field. Our code uses a dual-null formulation for
spherically symmetric space-time integration, and the numerical range covers both universes connected by the
wormhole. We observe that the wormhole is unstable against Gaussian pulses in either exotic or normal
massless Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons and either explodes to
form an inflationary universe or collapses to a black hole if the total input energy, is, respectively, negative or
positive. As the perturbations become small in total energy, there is evidence for critical solutions with a certain
black-hole mass or Hubble constant. The collapse time is related to the initial energy with an apparently
universal critical exponent. For normal matter, such as a traveller traversing the wormhole, collapse to a black
hole always results. However, carefully balanced additional ghost radiation can maintain the wormhole for a
limited time. The black-hole formation from a traversible wormhole confirms the recently proposed duality
between them. The inflationary case provides a mechanism for inflating, to macroscopic size, a Planck-sized
wormhole formed in space-time foam.




BH and WH are interconvertible 7 (New Duality?)

S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

e They are very similar — both contain (marginally) trapped

surfaces and can be defined by trapping horizons (TH)

e Only the causal nature of the THs differs, whether THs

evolve in plus / minus density.

Black Hole Wormhole
Locally Achronal(spatial/null) | Temporal (timelike)
defined by | outer TH outer THs

= 1-way traversable = 2-way traversable

Einstein eqgs. || Positive energy density | Negative energy density

normal matter y .
exotic matter
(or vacuum)

Appearance || occur naturally Unlikely to occur naturally.
but constructible 777




2 Fate of Morris-Thorne (Ellis) wormhole?

e “Dynamical wormhole” defined by local trapping horizon
e spherically symmetric, both normal/ghost KG field
e apply dual-null formulation in order to seek horizons

e Numerical simulation

2.1 ghost/normal Klein-Gordon fields

Lagrangian:

R 1
16 4r

L—v=g

(3997 + V@) +4- (3767 + 1206))

- g - 7

normal ghost

The field equations

G = 2 [t = g (5(T0P + Vi) 2 (6,00 — g (5(V0P +Val9))
Oy = d‘ill;f), 0¢ = d‘g;(b) (Hereafter, we set V1(¢) = 0, Va(¢) = 0)



2.2 dual-null formulation, spherically symmetric spacetime

S A Hayward, CQG 10 (1993) 779, PRD 53 (1996) 1938, CQG 15 (1998) 3147

e The spherically symmetric line-element:

ds® = r?dS* — 2 dxtda,

where r = r(zt,x7), f = f(x",27), -

e [he Einstein equations:

0u0:r + (02f)(02r) = —r(9s0) +

rd, 0_r + (04r)(0_r) + e/ /2 = 0,
2000 f 4+ 2(8,)(0-r) + e = +2r4(0,9)(0-¢) — 2r*(8:.9)(D-9),
rd;0-¢ + (041)(0-0) + (0-r)(0:0) = 0,
rd:0-¢ + (017r)(0-v) + (0-1)(0+¢) = 0.

e To obtain a system accurate near 3™, we introduce the conformal factor |2 = 1/r|.
define first-order variables, the conformally rescaled momenta

oxt

T<aﬂ:¢)27

We also

expansions
inaffinities
momenta of ¢

momenta of

Yy =204 = —207°0,0Q
Vy — aif

pr =10+0 = Q00
Ty =10 = Q0.

<8i = 2r_10i7”)

—t

/N 7N N N
W DO
—— N— N N




The set of equations (cont.):

010y = —vpdy — 2075 + 2007,

0195 = —Q00_[2+e7)),

Orve = —Q2(0.9_/2+e —2mym_ + 20, p_),
Orps = —W3ps/2,

Orme = —0omy/2.

and remember the identity: 0,0_ = 0_0,:

S O

O SN
—_ o~ T T

/N 7 N 7N N N

O

2.3 Initial data on 7 =0, x— =0 slices and on S

Generally, we have to set :

<Q7 f7 ﬂ:l:) ¢7 @D)

(Via 4+, Wi)

onS:xt =2 =0

on Yzt =0, 2T >0




Grid Structure for Numerical Evolution

Xminus xplus

N\
N\

wormhole throat



Ghost pulse input — Bifurcation of the horizons

(a) pulse input with negative energy

10

Inflationary

e+<0
e_>o

expansion

(b1) pulse input with positive energy

X minus

X minus

I
|
J

e+>0
e_<o

Black
Hole

ghost scalar

Figure 3: Horizon locations, . = 0, for perturbed wormhole. Fig.(a) is the case we supplement the ghost field, ¢, = 0.1,
—0.1 and —0.01. Dashed lines and solid lines are ¥, = 0 and ¥_ = 0
respectively. In all cases, the pulse hits the wormhole throat at (z,27) = (3,3). A 45° counterclockwise rotation of the figure

and (b1l) and (b2) are where we reduce the field, ¢,

corresponds to a partial Penrose diagram.

6+>O
6_<0




Bifurcation of the horizons — go to a Black Hole or Inflationary expansion

Black Hole
or
Inflationary
expansion 6 |
N e amplitude = +0.10 :
: = 5 | — — -amplitude = +0.01 : 2
I 8 no perturbation :: ‘
1 £ 4 || — - -amplitude =-0.01 i !
! o — ---- amplitude = -0.10 ] I
1 ° ;
| = : /
I © 3 ;
| (7]
S /
: ; /
c 2+ / .
— /
(4] Ve
o P
i < 1 T
X minus = T~
o ‘ .
< N
< 0 \ \ S
+ 0 2 4 6 8 10 12
proper time on the "throat"

Figure 4: Partial Penrose diagram of the evolved space-time.
Figure 6: Areal radius r of the “throat” zt = x7, plotted as a function of proper time. Additional negative energy causes
inflationary expansion, while reduced negative energy causes collapse to a black hole and central singularity.



Local Energy Measure — Determination of the Black Hole Mass

(a) pulse input with negative energy (b1) pulse input with positive energy
102 | | 1.0 | ‘
— — -xplus=12 4,;-:;"’— — — -xplus=12
——————— X plus = 16 =7 ----xplus =16
10 H 7
--------- x plus = 20 ad -------- X plus =20
e As
— 4 — ,/ Black hole mass
< 1.0 - e . < _4 IM=042
- G - —_——— = = = .~
+ 7 + —_| - i
x 7 X 010 -
~ s ~ . R ““"' _____________________________
> /‘v':" > pmemmmemmtmITT
2 010 T - >
) e = )
c - . —- c
Ll I R B L
-------------------------- horizon 6 =0
0.010 - = *
formed at x=4.46
0.0010 | | | | 0.010 | A |

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6
X minus X minus

Figure 7: Energy E(xz",27) as a function of z—, for 7 = 12,16, 20. Here ¢, is (a) 0.05, (b1) —0.1 and (b2) —0.01. The energy for
different ™ coincides at the final horizon location x, indicating that the horizon quickly attains constant mass M = E(oo, z5).
This is the final mass of the black hole or cosmological horizon.



Is there a Minimum Black Hole Mass to be formed?

(a) N
) ‘ i | 0.50
/(Ca’ Cb) =(107, 9) -
6.0 | \ \ 7 | 10-1’ 3)
) 0.40
. B -
™ 0.35 |- ;Ca’ Cb) ( 0 y 9) .// ,A (10 1’ 6)
4.0 ]
I _ —aW 4
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10 10 1073 102 10" 105 10 10° 1o o
EO EO

Figure 8: Relation between the initial perturbation and the final mass of the black hole. (a) The trapping horizon (¥, = 0)
coordinate, z; — 3 (since we fixed ¢, = 3), versus initial energy of the perturbation, Ey. We plotted the results of the runs of
ce = 1071 -+ 107" with ¢, = 3,6, and 9. They lie close to one line. (b) The final black hole mass M for the same examples.
We see that M appears to reach a non-zero minimum for small perturbations.



Normal Pulse (a traveller) Input — Forming a Black Hole

X minus

normal scalar
pulse

0 | |

0 2 4 6 8
x plus

Figure 9: Evolution of a wormhole perturbed by a normal scalar field. Horizon locations: dashed lines and solid lines are ¢, = 0
and 1_ = 0 respectively.



Critical Minimum Black Hole Mass again

(a) (b)
8.0 0.50 ‘
7.0 - _
045
6.0 - i
0.40 -
5.0
(a9}
L. 40 - . s 035 -
x
3.0
0.30 -
2.0
0.25
10 |- .
0.0 | | | | 0.20 | | | |
10° 10°* 10° 107 10" 10° 10° 10* 10° 10 107 10°
E0 Eo

Figure 10: The same plots with Fig.?? for the small conventional field pulses. (a) The trapping horizon (¢, = 0) coordinate,
17 —3 (since we fixed ¢, = 3), versus initial energy of the perturbation, Fy. We plotted the results of the runs of ¢, = 0.5, - - -, 1072
with & = 3,6, and 9. They lie close to one line. (b) The final black hole mass M for the same examples.



Travel through a Wormhole — with Maintenace Operations!

10

X minus

A
\
\
|

\
case A (no maintenance)

normal scalar pytse
(travellers

)
ghost scalar pulse
for maintenance
0 |
2

4 6 8 10
X plus

Figure 11: A trial of wormhole maintenance. After a normal scalar pulse, we signalled a ghost scalar pulse to extend the life

of wormhole throat. The travellers pulse are commonly expressed with a normal scalar field pulse, (¢, ¢, ¢.) = (40.1,6.0,2.0).
Horizon locations ¥, = 0 are plotted for three cases:

(A) no maintenance case (results in a black hole),
(B) with maintenance pulse of (cq, ¢, ¢.) = (0.02390, 6.0, 3.0) (results in an inflationary expansion),
(C) with maintenance pulse of (cq, ¢y, ¢.) = (0.02385, 6.0, 3.0) (keep stationary structure upto the end of this range).



Discussion

Dynamics of the Ellis-Morris-Thorne traversible wormhole

= WH is Unstable
(A) with positive energy pulse = Black Hole

(B) with negative energy pulse = Inflationary expansion

= (A) confirms duality conjecture between BH and WH.

= (B) provides a mechanism for enlarging a quantum wormbhole
to macroscopic size.

e We answered to the question of :
what happens if our hero (or heroine) attempts to traverse
the wormbhole.

e New discoveries of the critical behaviour.

“Science can be stranger than science fiction.”
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25 MAY 2002 No2344 WEEKLY £2.30 US$3.95

Quantum foot in the door

ALL around us are tiny doors that lead
to the rest of the Universe. Predicted

by Einstein’s equations, these quantum
wormholes offer a faster-than-light short
cut to the rest of the cosmos—at least
in principle. Now physicists believe they
could open these doors wide enough to
allow someone to travel through.

Quantum wormholes are thought to
be much smaller than even protons and
electrons, and until now no one has
modelled what happens when something
passes through one. So Sean Hayward
at Ewha Womans University in Korea and
Hisa-aki Shinkai at the Riken Institute of
Physical and Chemical Research in Japan
decided to do the sums.

They have found that any matter
travelling through adds positive energy
to the wormhole. That unexpectedly
collapses it into a black hole, a
supermassive region with a gravitational
pull so strong not even light can escape.

But there's a way to stop any would-be
traveller being crushed into oblivion.
And it lies with a strange energy field
nicknamed “ghost radiation”. Predicted
by quantum theory, ghost radiation is
a negative energy field that dampens
normal positive energy. Similar effects
have been shown experimentally to exist.

Ghost radiation could therefore be
used to offset the positive energy of
the travelling matter, the researchers
have found. Add just the right amount
and it should be possible to prevent the
wormhole collapsing—a lot more and
the wormhole could be widened just
enough for someone to pass through.

It would be a delicate operation,
however. Add too much negative energy,
the scientists discovered, and the
wormhole will briefly explode into a new
universe that expands at the speed of
light, much as astrophysicists say ours
did immediately after the big bang.

For now, such space travel remains
in the realm of thought experiments.
The CERN Large Hadron Collider in
Switzerland is expected to generate one
mini-black hole per second, a potential
source of wormholes through which
physicists could try to send quantum-
sized particles. But sending a person
would be another thing. To keep the
wormhole open wide enough would take
a negative field equivalent to the energy
that would be liberated by converting the
mass of Jupiter. Charles Choi
More at: www.arxiv.org/abs/gr-qc/0205041

x4 EFAMIERFEH 2009/7/23 @ SLH
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Some Unsolved Problem in Classical GR

K‘E'@m - Ellﬂl "-i-tl.‘.'rl +I?.E"R5Jl

R. Penrose,
LOIT -

in “Seminar on Differential Geometry”
(Princeton U Press, 1982) Ly. -

. Find a suitable quasi-local definition of energy-momentum in GR. HT"(‘{"?

o L

. Find a suitable quasi-local definition of angular-momentum in GR.

. Find an asymptotically simple Ricci-flat space-time which is not flat -- or at least prove that
such space-times exist.

. Are there restrictions on k for non-stationary k-asymptotically simple space-times, with non-
zero mass, which are vacuum near I(Scri)?

. Find conditions on the Ricci tensor R_{ab} throughout M which ensure that the generators of
Scri are infinitely long.

. Show that if a cut C of Scri-plus [or Scri-minus] can be spanned by a spacelike hypersurface
along which an appropriate energy condition holds, then the Bondi-Sachs mass defined at C
IS non-negative.

. Does the Bondi-Sachs mass defined on cuts of Scri-plus have a well-defined limit as the cuts
recede into the past along Scri-plus, this limit agreeing with the mass defined at spacelike
infinity?



10.
11.

12.
13.

14.

R. Penrose,
in “Seminar on Differential Geometry”
(Princeton U Press, 1982)

Show that if the dominant energy condition holds, then the Bondi-Sachs energy-
momentum, and also the energy-momentum defined at spacelike infinity, are future-
timelike, the space-time being assumed not to be flat everywhere in the region of an
appropriate spacelike hypersurface.

In an asymptotically simple space-time which is vacuum near A (Scri) and for which
outgoing radiation is present and falls off suitably near i*O and i+, is it necessarily the
case that i”O and i+ are non-trivially related? (At least, are there some examples

i which i*0 and i”+ are non-trivially related?)

Find a good definition of angular momentum for asymptotically simple space-times.

If there is no incoming radiation and no outgoing radiation and the space-time M is vacuum
near 7/ and (in some suitable sense) near i*0, is M necessarily stationary near Scri?

Is Cosmic Censorship a valid principle in classical GR?

Let S be a spacelike hypersurface in M which is compact with boundary, the boundary
consisting of a cut C of Scri-plus together with a trapped surface T. Let m be the
Bondi-Sacks mass evaluated at C and let A be the area of T. Show that

A < 16mm?

provided that the dominant energy condition holds throughout some neighbourhood of S.
Show that there is no vacuum equilibrium configuration involving more than one black hole.



