# 一般相対論の数値計算手法

真貝寿明 Hisa-aki Shinkai

大阪工業大学情報科学部 shinkai@is.oit.ac.jp

December 4, 2011

| C            | ontents                                                        |           |
|--------------|----------------------------------------------------------------|-----------|
| 1            | Introduction                                                   | 2         |
|              | 1.1 一般相対性理論の概略と主要な研究テーマ (Topics in GR)                         | 2         |
|              | 1.2 なぜ数値相対論? (Why Numerical Relativity?)                       | 4         |
|              | 1.3 数値相対論の方法論概略 (Overview of Numerical Relativity Methodology) | 6         |
| 2            | 時間発展を考えるための時空の分解                                               | 8         |
|              | 2.1 ADM 形式 (ADM formulation)                                   | 8         |
|              | 2.2 Ashtekar 形式 (Ashtekar formulation)                         | 15        |
|              | 2.3 高次元の場合 (Higher-dimensional ADM formulation)                | 24        |
| 3            | 数値相対論の標準的手法                                                    | 27        |
|              | 3.1 どのように初期値を準備するか                                             | 27        |
|              | 3.2 どのようにゲージを設定するか                                             | 33        |
|              | 3.3 Ashtekar 形式を用いた数値相対論                                       | 36        |
| 4            | 数値相対論の定式化問題                                                    | 41        |
|              | 4.1 Overview                                                   | 41        |
|              | 4.2 The standard way and the three other roads                 | 42        |
|              | 4.3 A unified treatment: Adjusted System                       | 49        |
|              | 4.4 Outlook                                                    | 57        |
| $\mathbf{A}$ | 高次元時空における特異点形成                                                 | <b>62</b> |
|              |                                                                |           |

近畿大学セミナーノート 2011年12月9日-10日

This file and viewgraphs of the seminar are available at http://www.is.oit.ac.jp/~shinkai/

### 1 Introduction

## 1.1 一般相対性理論の概略と主要な研究テーマ (Topics in GR)

一般相対論研究者向けに、レビュー論文を更新しているサイト「Living Reviews in Relativity」<sup>1</sup>がある。 そのサイトに掲載された論文のテーマ一覧。-published -upcoming の順。2011/12/1 現在。

- 重力波 (Gravitational Waves) 12 本+12
  - The Motion of Point Particles in Curved Spacetime; GW Detection by Interferometry (Ground and Space); GWs from Gravitational Collapse; Interferometer Techniques for GW Detection; On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors; Physics, Astrophysics and Cosmology with GW; The PN Approximation for Relativistic Compact Binaries; Gravitational Radiation from PN Sources and Inspiralling Compact Binaries; Low-Frequency GW Searches Using Spacecraft Doppler Tracking; Time-Delay Interferometry; GW Data Analysis. Formalism and Sample Applications: The Gaussian Case; Analytic BH Perturbation Approach to Gravitational Radiation
  - Advanced Technologies for Space GW Detectors; Extreme and Intermediate Mass-Ratio Inspiral Systems; GW Phenomenology; GW Sources: Binaries (High and Low Frequency); GW Sources: Cosmological Background; GWs from Extreme Mass Ratio Inspiral (EMRI); Interface Between GWs and Astronomy; Pulsar Timing and Low Frequency GW Detection; Quantum Measurement Theory in GW Detection; Rates for Binary Coalescences; The ADM canonical approach to the PN motion of compact binaries; The Square-Kilometre-Array (SKA)
- 数値シミュレーション (Numerical Relativity) 10 本+9
  - Coalescence of BH-Neutron Star Binaries; Characteristic Evolution and Matching; Spectral Methods for NR; Numerical Hydrodynamics and Magnetohydrodynamics in GR; Critical Phenomena in Gravitational Collapse; Event and Apparent Horizon Finders for 3+1 NR; Numerical Hydrodynamics in Special Relativity; Numerical Approaches to Spacetime Singularities; Computational Cosmology: From the Early Universe to the Large Scale Structure; Initial Data for NR
  - Algebraic Computing in GR; Binary Neutron Star Mergers; Boson Stars; Formulations of Einstein's Equations for NR; Interface of PN Theories and NR; Methods of GW Extraction in NR; NR for BHs; Numerical Simulations of Supernovae; Perturbative Interface to the Binary BH Problem
- 数学的な側面 (Mathematical Relativity) 11 本+5
  - The Einstein-Vlasov System/Kinetic Theory; Cosmic Censorship for Gowdy Spacetimes; Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation; Quasi-Local Energy-Momentum and Angular Momentum in GR; Theorems on Existence and Global Dynamics for the Einstein Equations; Isolated and Dynamical Horizons and Their Applications; Gravitational Lensing from a Spacetime Perspective; Conformal Infinity; Speeds of Propagation in Classical and Relativistic Extended Thermodynamics; Stationary BHs: Uniqueness and Beyond; Hyperbolic Methods for Einstein's Equations
  - Continuum and Discrete Initial-Boundary-Value Problems and Einstein's Field Equations; Cosmic Censorship (toolbox); Exact Solutions; Gravitational Lensing from a Spacetime Perspective; The Constraint Problem for Einstein's Equations
- 量子重力 (Quantum General Relativity) 11 本+4
  - Entanglement Entropy of BHs; Quantization of Midisuperspace Models; Loop QG; Loop Quantum Cosmology; Stochastic Gravity: Theory and Applications; The Asymptotic Safety Scenario in QG; QG in 2+1 Dimensions: The Case of a Closed Universe; QG in Everyday Life: GR as an Effective Field Theory; Perturbative QG and its Relation to Gauge Theory; The Thermodynamics of BHs; Discrete Approaches to QG in Four Dimensions

<sup>&</sup>lt;sup>1</sup>http://relativity.livingreviews.org/

- Causal Sets; Minimal Length Scale Scenarios for QG; QG Phenomenology; The Spin Foam Approach
  to QG
- 実験的検証 (Experimental Foundations of Gravitation) 10 本+5
  - Analogue Gravity; Varying Constants, Gravitation and Cosmology; Tests of Gravity Using Lunar Laser Ranging; The Pioneer Anomaly; f(R) Theories; Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum; The Confrontation between GR and Experiment; Modern Tests of Lorentz Invariance; Testing GR with Pulsar Timing; Relativity in the Global Positioning System
  - Experiments in Gravitation with Highly Stable Clocks; Laboratory Measurements of Newtons's Constant, G; MOND; Testing Gravity Using GWs; Tests of Gravity at Short Range
- 宇宙物理現象 (Relativity in Astrophysics) 9本+5
  - Physics of Neutron Star Crusts; Binary and Millisecond Pulsars; Relativistic Fluid Dynamics:
     Physics for Many Different Scales; The Evolution of Compact Binary Star Systems; Relativistic Binaries in Globular Clusters; Massive BH Binary Evolution; Rotating Stars in Relativity; Quasi-Normal Modes of Stars and BHs; Gravitational Lensing in Astronomy
  - BH Accretion Disks; Electromagnetic Counterparts to Supermassive BH Mergers; Massive BHs in Galaxies; Microquasars; The Magnetic Fields of Neutron Stars
- 弦理論 (String Theory and Gravitation) 4本+3
  - Brane-World Gravity; BHs in Higher Dimensions; Spacelike Singularities and Hidden Symmetries
    of Gravity; Spinning Strings and Integrable Spin Chains in the AdS/CFT Correspondence
  - Brane Actions and Kappa-Symmetry; Classification of Near-Horizon Geometries of Extremal BHs;
     Solitonic Solutions of Supergravity
- 宇宙論 (Physical Cosmology) 5本+2
  - The Hubble Constant; Measuring our Universe from Galaxy Redshift Surveys; Experimental Searches for Dark Matter; The Cosmological Constant; The Cosmic Microwave Background
  - Cosmic Evolution of Super Massive BHs in Galactic Centers (the X-Ray view); The Age of the Universe
- 科学史 (History of Relativity) 2本+3
  - History of Astroparticle Physics and its Components; On the History of Unified Field Theories
  - History of GW Research; On the History of Unified Field Theories (1933-ca 1960); The Hole Argument

#### 上記の論文タイトルで使用した略語は以下のもの.

BH Black Hole

GR General Relativity

GW Gravitational Wave

NR Numerical Relativity

PN Post-Newtonian

QG Quantum Gravity

## 1.2 なぜ数値相対論? (Why Numerical Relativity?)

The Einstein equation:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}, \qquad \kappa = 8\pi G$$
 (1.1)

## What are the difficulties? (#1)

- for 10-component metric, highly nonlinear partial differential equations.
- completely free to choose coordinates, gauge conditions, and even for decomposition of the space-time.
- mixed with 4 elliptic eqs and 6 dynamical eqs if we apply 3+1 decomposition.
- has singularity in its nature.

#### How to solve it?

- find exact solutions
  - assume symmetry in space-time, and decomposition of space-time spherically symmetric, cylindrical symmetric, ...
  - assume simple situation and matter time-dependency, homogeneity, algebraic speciality, ...

We know many exact solutions (O(100)) by this "Spherical Cow" approach.

- approximations
  - weak-field limit, linearization, perturbation, ...

We know correct prediction in the solar-system, binary neutron stars, ... We know post-Newtonian behavior, first-order correction, BH stability, ...

#### Why don't we solve it using computers?

- dynamical behavior
- strong gravitational field
- no symmetry in space
- gravitational wave!
- higher-dimensional theories, and/or other gravitational theories, ...

The most robust way to study the strong gravitational field. Great.

#### **Numerical Relativity**

Box 1.1

- = Solve the Einstein equations numerically.
- = Necessary for unveiling the nature of strong gravity. For example:
- gravitational waves from colliding black holes, neutron stars, supernovae, ...
- relativistic phenomena like cosmology, active galactic nuclei, ...
- mathematical feedback to singularity, exact solutions, chaotic behavior, ...
- laboratory for gravitational theories, higher-dimensional models, ...

### What are the difficulties? (#2)

- How to construct a realistic initial data?
- How to treat black-hole singularity?
- We cannot evolve the system stably in long-term evolution. Why?

#### General and recent introductions

More general and recent introductions to numerical relativity are available, e.g. by Pretorius (2007) [4], Alcubierre (2008) [1], Baumgarte-Shapiro (2010) [2], and Gourgoulhon (2012) [3].

## References

- [1] M. Alcubierre, *Introduction to 3+1 Numerical Relativity* (International Series of Monographs on Physics), (Oxford University Press, 2008).
- [2] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer, (Cambridge University Press, 2010).
- [3] E. Gourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical Relativity (Lecture Notes in Physics), (Springer-Verlag, 2012)
- [4] F. Pretorius, in *Relativistic Objects in Compact Binaries: From Birth to Coalescence*, Editor: Colpi et al. Pulisher: Springer Verlag, Canopus Publishing Limited, arXiv:0710.1338.

## 1.3 数値相対論の方法論概略 (Overview of Numerical Relativity Methodology)

## Numerical Relativity - Methodology

Box 1.2

0. How to foliate space-time

Cauchy (3+1), Hyperboloidal (3+1), characteristic (2+2), or combined?

 $\Rightarrow$  see e.g. [2]  $\Rightarrow$  see e.g. [5]

 $\Rightarrow$  if the foliation is (3+1), then  $\cdots$ 

1. How to prepare the initial data

 $\Rightarrow$  see e.g. [1]

Theoretical: Proper formulation for solving constraints?

How to prepare realistic initial data? Effects of background gravitational waves?

Connection to the post-Newtonian approximation? Techniques for solving coupled elliptic equations?

Appropriate boundary conditions?

2. How to evolve the data

Numerical:

Theoretical: Free evolution or constrained evolution?

Proper formulation for the evolution equations?  $\Rightarrow$  see e.g. [4, 3] Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations?

Appropriate boundary treatments? Singularity excision techniques? Matter and shock surface treatments?

Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction?

Connection to other approximations?

Numerical: Identification of black hole horizons?

Visualization of simulations?

#### References

- [1] G. Cook, Living Rev. Relativ. 2000-5 at http://www.livingreviews.org/
- [2] S. Husa, gr-qc/0204043; gr-qc/0204057.
- [3] H. Shinkai, J. Korean Phys. Soc. **54** (2009) 2513 (arXiv:0805.0068)
- [4] H. Shinkai and G. Yoneda, gr-qc/0209111
- [5] J. Winicour, Living Rev. Relativ. 2009-3 at http://www.livingreviews.org/

### **Notations:**

- signature (-+++).
- Covariant derivatives, Christoffel symbol

$$\nabla_{\mu}A^{\alpha} \equiv A^{\alpha}_{;\mu} \equiv A^{\alpha}_{,\mu} + \Gamma^{\alpha}_{\mu\nu}A^{\nu} \tag{1.2}$$

$$\nabla_{\mu} A_{\alpha} \equiv A_{\alpha;\mu} \equiv A_{\alpha,\mu} - \Gamma^{\nu}_{\alpha\mu} A_{\nu} \tag{1.3}$$

$$\Gamma^{\alpha}_{\mu\nu} = (1/2)g^{\alpha\beta}(g_{\beta\mu,\nu} + g_{\beta\nu,\mu} - g_{\mu\nu,\beta}) \tag{1.4}$$

• Riemann tensor, Ricci tensor, Weyl tensor

$$R^{a}_{bcd} \equiv \partial_{c}\Gamma^{a}_{bd} - \partial_{d}\Gamma^{a}_{bc} + \Gamma^{a}_{ec}\Gamma^{e}_{bd} - \Gamma^{a}_{ed}\Gamma^{e}_{bc}$$

$$(1.5)$$

$$R_{ab} \equiv R^{\mu}_{\ a\mu b} \equiv \Gamma^{\mu}_{ab,\mu} - \Gamma^{\mu}_{a\mu,b} + \Gamma^{\mu}_{\nu\mu} \Gamma^{\nu}_{\ ab} - \Gamma^{\mu}_{\ \nu b} \Gamma^{\nu}_{\ a\mu}$$
 (1.6)

$$C_{abcd} = R_{abcd} - g_{a[c}R_{d]b} + g_{b[c}R_{d]a} - \frac{1}{3}Rg_{a[c}g_{d]b}, \tag{1.7}$$

• ADM decomposition, the extrinsic curvature (§2)

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}, \quad (\mu, \nu = 0, 1, 2, 3)$$
 on  $\Sigma(t)$ ...  $d\ell^2 = \gamma_{ij} dx^i dx^j, \quad (i, j = 1, 2, 3)$ 

$$ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$
(1.8)

$$K_{ij} \equiv -\perp_i^{\mu} \perp_j^{\nu} n_{\mu;\nu} = -\frac{1}{2} \mathcal{L}_n \gamma_{ij}. \tag{1.9}$$