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2 RRARBRZEZSOHDREDDE

Z ZClZ, Einstein FE=
G = kKT, where G =R, — %gle +Agy and k=8rG (2.1)
Z TR ZE) ) TBRICESHRZ 2 E23HT 5.

2.1 ADM X (ADM formulation)
2.1.1 The 341 decomposition of space-time

The idea of space-time evolution was first formulated by Arnowitt, Deser, and Misner (ADM) [10]. The
formulation was first motivated by a desire to construct a canonical framework in general relativity,
but it also gave the community to the fundamental idea of time evolution of space and time: such as
foliations of 3-dimensional hypersurface (Figure 2.1). This scheme is often called ‘3+1 formulation’,
‘the ADM formulation’; or ‘Cauchy approach’.

3-metric, lapse function, shift vectors

Let us denote the hypersurface X(¢) which is the three-dimensional spatial space with a parameter
t. The evolution of spacetime is expressed as the dynamics of ¥(¢). The formulation begins by
decomposing the metic as

ds? = G dxt dz”,  (p,v=0,1,2,3)
on X(t)... df* = ~;;da’dat, (i,j =1,2,3)

Let the unit normal vector of the slices be n#, where
ny = (—a,0,0,0), nt =g"n, = (1/«, —Bi/a).
We then have a 3+1 decomposed metric as

ds* = —a’dt* + v (da' + Bidt)(da? + Fdt) (2:2)
= (—a2 + ﬁlﬁl) dt® + 203; dt de’ + Vij dat da?

shift vector 18 ¢
¥

,8 g dt coordinate constant line

el A S+ d)
7 .

lapse function Oy —, adt

%W

{ = constant hypersurface

surface normal line

Figure 2.1: Concept of time evolution of space-time: foliations of 3-dimensional hypersurface. The
lapse and shift functions are often denoted v or N, and 3 or N*, respectively.
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_ —O[2+/61/81 ﬂ] 7 2 _1/a2 ﬁ]/OZZ
T = Bi Yij )’ T =\ fija? A —pigija?

where o and f3; are defined as

o= 1/\/ _9007 ﬂj = ng- (23)

and called the lapse function and shift vector, respectively.

Projection onto X
In order to decompose the Einstein equation into 3+1, we introduce the projection operator L# normal
to nt,

Yo = Gpv + Nyl v =0, +nt'n, = LY. (2.4)

We also call the spatial components of ;; the intrinsic 3-metric gij.Q
The projections of the Einstein equation can be the following three:

Gunt'n” = kT,n'n” =kpy (2.5
GuntLl] = kT,n"1l]=—-~rJ; .
Guw LF 1Y = KT, L 1Y = kSyj, (2.7)

where pp, J; and S;; are energy density, momentum density and stress tensor, respectively, defined by
an observer moving along n,, = (—«,0,0,0). That is, the energy-momentum tensor, 7},,, is decomposed
as

Ty = pangny + Juny, + Jony + S (2.8)

Extrinsic curvature
In order to express equations (2.5)-(2.7) tractable, we introduce the extrinsic curvature K;; as

1 1
Kij =~ L Lfny = - = o (—&s%j + Bij + @\i) = —5Ln7ij. (2.9)

Projection of the Einstein equation onto the 3-hypersurface X is given using the Gauss-Codacci rela-
tion: The Gauss equation,

B R s=WRr, 1131 P17 — K% Kgs + K%Kp,y, (2.10)

and the Codacci equation, '
DK, — D;K = -WR,,n" 1.7, (2.11)

where K = K%;, and D,, is the covariant differentiation with respect to 7;;.

2If n,, is space-like, then v, = guw — Nunu.
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2.1.2 The Standard ADM formulation

The projections (2.5)-(2.7) can be derived as follows.

The Standard ADM formulation [63, 75]: Box 2.1
The fundamental dynamical variables are (v;j, K;;), the three-metric and extrinsic curvature.
The three-hypersurface ¥ is foliated with gauge functions, (o, 3%), the lapse and shift vector.

e The evolution equations:

Ovij = —2aK;j+ DiB;j+ D;p, (2.12)

8tKZ‘j = « (3)Rij +aKK;j — QOzKikKkj —D;Djo + (Dzﬂk)Kkj + (Djﬂk)Kkl + ﬂkaKij
1

—adyy — wa{Sij + 5vij(pr — trS)}, (2.13)

where K = K%, and (3)Rij and D; denote three-dimensional Ricci curvature, and a
covariant derivative on the three-surface, respectively.

e Constraint equations:

HAPM = OGR4 K? - KijKV — 2kp — 2A =~ 0, (2.14)
M%ADM = DjKji — DZK — HJZ‘ ~ 0, (215)

where ()R =) R?;: these are called the Hamiltonian (or energy) and momentum con-
straint equations, respectively.

The formulation has 12 free first-order dynamical variables (v;;, K;;), with 4 freedom of gauge choice
(o, B;) and with 4 constraint equations, (2.14) and (2.15). The rest freedom expresses 2 modes of
gravitational waves.

What are constraints?
The ADM formulation is a kind of constrained system, like Maxwell equations.

‘ Maxwell egs. ‘ ADM Einstein eq.
constraints div E = 47p Hamiltonian constraint (2.14)
divB =0 Momentum constraints (2.15)
evolution eqs. | OE = rot B — 47j Oij =+ (2.12)
8tB = —rot E 8tKij = (213)

Table 2.1: Maxwell equations and ADM equations.
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Constraint propagations

In order to see the constraints are conserved during the evolution or not, we have to check how the
constraints evolve. The constraint propagation equations, which are the time evolution equations of
the Hamiltonian constraint (2.14) and the momentum constraints (2.15), can be written as [33, 59]

The Constraint Propagations of the Standard ADM: Box 2.2

OH = B(OH) +20KH — 2077 (9;M;)

(O Yimk) (27™ART — ARV M — 441 (9j0) M, (2.16)
oM = —(1/2)a(0H) — (Gia)H + 7 (9;M,)
+aKM; — By (O ) M + (0:86)y™ M. (2.17)

From these equations, we know that if the constraints are satisfied on the initial slice ¥, then
the constraints are satisfied throughout evolution (in principle).

Standard ADM vs Original ADM

We should remark here the ‘original’ ADM formulation. The evolution equations in Box 2.1 is the
version by Smarr and York which is now the standard convention for numerical relativists. They
adapted Kj;; as a fundamental variable instead of the conjugate momentum 7%, which was in the
original Arnowitt-Deser-Misner’s canonical formulation. Note that there is one replacement in (2.13)
using (2.14) in the process of conversion from the original ADM to the standard ADM equations.

More detail description (vacuum case): The Hamiltonian density can be written as
Hor = n94; —L, where L£=+v/—gR=a/7[®R-K?*+ K;;K"],

where 7% is the canonically conjugate momentum to Yij

L g g
T = - - _ ,YKU_K,YU’
o VA )
omitting the boundary terms. The variation of Hgr with respect to a and (; yields the constraints, and the
. . : . 0Hgr ij _  OHgr
dynamical equations are given by *;; = — and 77 = — .
omtd (Sh”
0 0N (ms — (1/2)73;7) + 2D N
Yij = Tij — Yig™ i4V5),
tVig S J J (@£Y5)
ol = —/AN(®RY - (1/2)®Ry7) + (1/2)ﬂhw‘ (T ™™ — (1/2)7%) — 2£(ﬂ'i"7rnj —(1/2)7m)
val val

+VA(D'D’N =49 D™D,,N) + /7Dy (y 2N 7)) — 27™ D, NI
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2.1.3 Matter equations

The energy-momentum tensor, 7}, and its evolution equations are model dependent. Let us see two
introductory cases briefly.

Scalar field
We start from the Lagrangian

=77 |5 — (5070 +V9)) (2.18)

where V(@) is a potential of the scalar field. The parameter € is the signature of the field ¢ and takes
the value +1 (normal field) or —1 (ghost field). From the variation of Lagrangian, we get

88, = 5/\/Tgid4z = ;}ﬁ/d%\/fgdguv [RW — ;gWR} (2.20)
58 = [d'a(~cg) |~gu (5(V6P +V(6)) + 6,0, ] v=gig™.
4 / dae [(\/jgg‘wgb,u)w - \/?g‘;g] 56. (2.21)

Therefore, we naturally set T}, as

G = KTy T —e [qﬁm,y g (;(wﬁ)? + V(¢))] | (2.22)

The field equation ( Klein-Gordon equation) for the scalar field becomes

oV 1 oV
O¢ = -—, thatis —(/—99""¢ )= 5. 2.23
The equation (2.23) can be constructed also in a first-order form. For example, in a plane symmetric
spacetime, ds?> = —a?dt? + 2pdtdr + gpda® + gyydy2 + ¢..dz?, where all metric components are
functions of x and ¢, we introduce the conjugate momentum
gl p
Il = L(—ﬁﬂb + —0:9), (2.24)
o 711

where v = det;;, and write down eq.(2.23) into two first-order partial differential equations:

_ Bye_ >

oo = o~ ¢ WH’ (2.25)
dv 1

Ol = aﬁ@Jr@xﬁ[ﬁH—aﬁ@m]- (2:26)

Consequently, the dynamical variables are ;; and K;; (and ¢ and II, when a scalar field exists).

3Note that from 6g = ¢9°°6gas = —ggapdg®®,

1 a 1 a
oV=g= _5\/jggab5g b= 5\/—799 *6ab.- (2.19)
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Perfect fluid [6]
We assume the perfect fluid stress-energy tensor,

T = (p+ pe + P)uptiy + Py (2.27)

where p, € and p are the proper mass density, the specific internal energy and the pressure, respectively,
and u,, is the 4-velocity of the fluid.

The evolution equation for the fluid is given by the Bianchi identity, T#",, = 0. The projections
n'T,”,, = 0 and h"T),7;, = 0 give respectively,

OApm) + (AprV') = =0V + 8) + av/ipK

JEIMK,
- J g DT B 2.28
Gl pH + D ( )

h(VATi) + 0u(VAIVE) = —ay70ip— Alp+ pr) O

1 kal
2 0 Ju(@:8Y), 2.29
5T Om) =+ VA 0i) (2.20)
where
pr. = PP (2.30)
i u' aJt )

V’L = _ = _ ’L' 231
u  p+pm p (2.31)

These represent the energy conservation and the Euler equation. The continuity equation, (pu*)., =0
(the GR version of 0;p + 0;(pv;) = 0), gives

A (v/yaulp) 4 9y (y/yaul pVt) = 0. (2.32)
The normalization of the 4-velocity, u*u, = —1, also gives us
au’ = Pt (2.33)

Vo pm)? — I

We also need the equation of state,
p=ple, p). (2.34)

e For the perfect fluid, the variables are fluid components (p, e, p), which are related by (2.34) so
that the freedom is 2. We can say the combination (p, pg), instead.

e The momentum J; is also freely speciable. From (p, pg, J;),

Sij = + pij (2.35)

e For the total 5 variables, we have 5 equations (2.28), (2.29), and (2.32).
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2.1.4 Numerical Procedures

In numerical relativity, this free-evolution approach is also the standard. This is because solving the
constraints (non-linear elliptic equations) is numerically expensive, and because free evolution allows
us to monitor the accuracy of numerical evolution.

The normal numerical scheme (free evolution scheme):

1. preparation of the initial data
solve the elliptic constraints for preparing the initial data (v;;, Kj).

2. time evolution

(a) specify the gauge conditions (slicing conditions) for the lapse a and shift ;.
(b)
()

)

(d) extract physical quantities.

evolve (7;;, K;j) by using the evolution equations.

monitor the accuracy of simulations by checking the constraints.

3. step back to 2 and repeat.
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2.2 Ashtekar &3\ (Ashtekar formulation)

T ZTlE, Ashtekar 12 & 2 — A FROILRZ AN T 5. EHGOHRERITERR O & IEHF 1L
IR %E Lo T0 3D, 7 — BN REHSD & 13582 LTy, Ashtekar 13, B/ % EH
WKHYT 2 B L, GOMIITHYS T8GR A LV 2ODRARLHICET T2 Lick), 7—YH
i & VIR T B A2 E 7,

BN L ERTIZ DR Box 2.3

o —MHING X, WDKK TRTHEERZEINTE 2 (SEfiHE) &9 3.

o F—UBEHIE, HRARISTE (FE) 2605, LT3,
U(x) — U (x) | RERTRE (KRR — 9 R — e
U(x) — @ W(x) AP (RPFINY — O F2H) — I (E

HY )
2
H 45 0 Jif %m =0 (iv*8, —m)¥ =0
xR — P A AT — > 2
(xh — ) (T — ¢@)p)
Wy Vy=0,+T D, =0, +1iqA,
el R A s A,
(AP0 £ TE 2) (EEBENTE 2, 7 =K
I @Cat g AL g, igAy) - m) T = 0
dr? Wodr dr " ’
5T D I m 7> R, BWGT YV FL,
(LA RE &) (7 =P AERE)

2.2.1 From Einstein to Ashtekar; transformation of Lagragians

Here we try to understand Ashtekar’s new formulation of general relativity [1] as the steps of rewriting
the Lagragian formalism [2, 3]. Note that Ashtekar himself introduced his new variables through a
kind of canonical transformation in the Hamiltonian formalism. 4

Einstein-Hilbert action (metric g,,)
First let us start from the Einstein-Hilbert action

Selg) = [ d'sv=gRlg) ~ 0%+ (09 (2.36)

which can be put into a canonical theory by means of the ADM method. That is, the metric g, is
decomposed as

ds? = gdatde” = —N?dt? + qj(da’ + N'dt)(dz? + N7dt) (2.37)

“This subsection refers much to H. Tkemori’s note in the proceedings of the 1st JGRG workshop at Tokyo (1991).
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Theory action order of 9, | independent variables
Einstein Einstein-Hilbert action ~ Sg | 2nd order | metric (g,.)
Palatini action Sp Ist order | metric (gu,) & Affine connection (F;\W)
Tetrad Palatini action St Ist order | tetrad (e?,) & spin connection (w,‘jb)
’AshtekarOriginal‘ Jacobson-Smolin action TSp | 1st order | tetrad (e?,) & self-dual connection (*wzb)

Table 2.2: Steps to the Ashtekar theory via Lagrangian formalism.

Sp with the Christoffel condition for I' — Sg
St with the Levi-Civita condition for w® — Sp
(torsion free condition)

TS with the Bianchi identity for Ry = Sr

(Ru[yaﬁ] = 0)

Table 2.3: Steps to the Ashtekar theory and their extensions.

where N is the lapse function (the same with ) and N' is the shift vector (3%) °, and g;; is the three
metric. That is,

—N? + NyN* Nj>

L, = ) 2.38
s ( N 4ij (2.38)

The canonical action, then, is given by
Sila.pl = [ d%w 1y p — NCx — NiCa (2.39)

where

Cr = Guup’p™ — /7R (2.40)
Crm' = —2V;p¥ (2.41)

1
where Giju = 5—=(qikj1 + 9k — ¢ijdk)-

2/a

Palatini action (metric g,,, Affine connection I'},)

The Einstein-Hilbert action (2.36) consists of the terms with the second-order derivative or the square
of the first order derivative of metric g,,. Palatini’s idea is to introduce the Affine connection I'y;, (=
I'J,,) to be independent to the metric g,,. The Palatini action

Splg, T = / d*z /=g g" R,(T) ~ g(d0 +TT) (2.42)

which is equivalent to the Einstein-Hilbert action (2.36) , Sp = Sk, when a connection F/’)V satisfies the
definition of the Christoffel symbol, I‘ﬁy = Ff;y(g) ~ 0g. This condition is derived from the variation

with respect to I'},,

ey Splg,T] = 0. (2.43)

The action (2.42) contains up to the first-order derivatives.

5We use N and N instead of a and 3, according to the convensions throughout this section.
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7R3 K (tetrad), 547K (triad), AEV#&# (spin connection) Box 2.4
o FIFERIT LIS 4 RIGERIEIER 2 ER T 5. EREREOIER 7 Fve B L L
T, INZEEOEERTRLALLDOE] 27 7 F 4 L5
guquﬁEgnlJ, nry = diag (—-1,1,1,1)

o [ARRIC, 3XILZEMCRTIICELEEREZEAL R P2 754 7 F ) &

i gij = EZ Y Sup
o JRIFTE SRR DT 2 RO X7 b VIR 5 2oy =

V.V =0,V + V7
LRTLEE, o, BAEVER LTS BAMICE,

w,' = BYN.E) = B" 0By - BBV EY O, B} + B0, B,

Tetrad Palatini action (tetrad e, spin connection wﬁb)
The next step is the introduction of the internal symmetry, that is, to introduce the local Lorentz

transformation as a gauge symmetry. We employ the orthonormal tetrad ej; in stead of the metric

9w, Which acts as a basis of the local Lorentz frame. We also employ the spin connection wfzb(: —wza)

instead of the Affine connection I'jj,, which acts as a gauge field of the local Lorentz albebra so(3,1).
The internal indices a, b, - - - are lowering and raising by the metric n,, = diag(—1,1,1,1). The tetrad
plays a role of a square root of the metric,

G = Nab €5 €5 (2.44)
The Palatini action in the tetrad form is written as
Srle,w] = / dize B B R, (w) (2.45)
where e is the determinant of e, and the EY is the inverse tetrad,
e :=det e}, = \/—g, EF = el g" ny. (2.46)

Now that the internal symmetry is taken into account, the Riemann curvature Raﬁ/w will be replaced
by the curvature Rzl; (w) of the spin connection wzb defined by

RY(w) = 0w’ — ,w® + wi ws — wiw?, (2.47)
that is to say, the curvature 2-form R is defined from the spin connection 1-form w® by

RP(w) := dw® + w® A w® (2.48)
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in the language of the differential forms. The action (2.45), then, can be expressed also as

/ = eaped R (W) Nef A e?. (2.49)

The tetrad Palatini action (2.45) is equivalent to Sp only when the spin connection equals to the
Levi-Civita connection w® = w%(e), that is the torsion free condition,

De? :=de® +w% Ae? =0 (2.50)

which is derived from the variation respect to w?,

—(MabST[e,w] =0. (2.51)

Self-dual action (tetrad ef;, self-dual connection +wzb)
The last step to the Ashtekar’s formulation is the introduction of the self-dual connection +wl‘jb. Note
that the self-duality here is with respect to the internal indices and not with the space-time indices.

Self-duality, anti-self-duality: Box 2.5
Suppose Fy, is an anti-symmetric tensor, then the duality transformation is defined as
* . 1 cd
ab *= 5€ab Feq, (2.52)

making use of the totally anti-symmetric symbol, £2*¢¢. Note that the dual of dual is equal to

the minus of the original,
*(*Fab) = —Lab (253)

when we choose the Lorentzian signature and use the metric 74, for lowering and raising the
internal indices. Thus, the duality transformation (2.52) corresponds to +i operation. If we
suppose the complex combinations

1 .
iFab = i(F‘ab:F2 Fab)7 (254)
then this satisfies the eigen-equations
*(iFab) =+ iFab- (255)

The notion of self-duality means an eigen-state of the duality transform operation and we call
tF, self-dual part of F,, (and ~ Fy;, anti-self-dual part of Fp).

The spin connection 1-form w® which has a pair of anti-symmetric internal indices can be uniquely
decomposed into the self-dual and anti-self-dual part,

w® = T 4~ (2.56)
The substitution of this relation into the definition of the curvature 2-form R results in

Rab(w) — Rab(+wab + —wab) — Rab(+wab) + Rab(—wab) = +Rab + —‘Rab7 (257)
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which means that the R? can also be decomposed additively according to the decomposition with
respect to the self-duality.
The previously mentioned tetrad-Palatini action (2.49)

1
Srle,w] = /5 Eabed RO (w) A e A el = /*Rcd(w) A el A el (2.58)
is decomposed as

/Rab YAt Ae +/ Rap("w) Aet A€
= +ST[7 ]+ ST[7 w]

with regard to the contributions of self-dual and anti-self-dual connections.

Ashtekar’s idea is to consider just a self-dual part of the action. The equivalence to the Einstein-
Hilbert action is still preserved with regard to just a half of duality components.

When the self-dual connection is equal to the self-dual part of the Levi-Civita connection

Fab =+, (e), (2.59)

0
the variation FJFST[ tw] = 0 is satisfied. It reduces the self-dual action equals to the Einstein-
Hilbert action with a factor half, *Sr[e, *w] = 1Sr[e, w(e)] = 25g(g].
The equivalence to the Einstein theory requires additional condition. Since the curvature of self-

dual connection is given by its complex combination

R(Fw) = TRMw) = 3 (Rw) i BO()) (2.60)
the action turns out to be
+ + 1 * . % a b
Stlefw(@] = 5 [ 7 (Raw(©) = i Ra(e) Ae Ae
- 2/ Rap(w(e)) + iRap(w(€))) A e® A e
_ §,S’T[e,w(e)]—|—i§/Rab(w(e))/\ea/\eb: %SE[Q]—l—O, (2.61)

where the last imaginary term is vanished by virtue of the 1st Bianchi identity
R (w(e)) Ael =0 (2.62)

which is the cyclic identity R, = 0 in the tensor form.

This means that the self-dual action would lead to the same equation of motion as the Einstein
equation so far as the tetrad or equivalently the metric is concerned. The anti-self-dual action can
also play the same role with the above discussion.

2.2.2 New Variables

The Ashtekar formalism can be regarded as a canonical theory starting from the self-dual action,
*Srle, tw] = / dze BE B R, (tw). (2.63)

where E¥ is the inverse tetrad, defined as E¥ := E%g"1qp, which makes the inverse space-time metric
as ¢" = n“bEgLE” as we mentioned before. See notations in Table 2.4.
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4-spacetime indices wov, - 0,003 raise and lower indices by g,

SO(1,3) indices ILJLK,--- (1),---,(3) n!’ = diag(—1,1,1,1)
3-spacetime indices 1,7, k- 1,---,3 Yij

SO(3) indices a,bye,--- (1),--+,(3) dab

volume forms €abe €abe™C = 3!

density e €ijk = €, €ijk = e_leijk €123 =1, e — 1
tetrad (inverse tetrad) E}’; (EY)  gw=ELE/n, Ef :=e)g"n1,

spin connection qu w{;’ = EvV,E].

curvature 2-form Fg, Fg, = 0, A, — O,A], — ie“bc.AZAf,

Table 2.4: Notations in §2.2.

Let us consider the 3 + 1 decomposition of the self-dual theory in the tetrad form after the ADM
decomposition. The spatial component of the tetrad, E} acts as an inverse triad since it produces the
inverse 3-metric, ¢ = E}E} We further impose the gauge condition

E?=0 (2.64)

then, the inverse tetrad is expressed as

EY E} 1/N —N¥/N
r=(g )= &) 269

Note that (2.64) allows Ef = (1/N,—N?/N) as a normal vector field to the space like hypersurface
spanned by the condition of t =const. This gauge choice is not a restriction on the general coordinate
transformation but on the local Lorentz transformation.

New variables (densitized inverse triad Efl, self-dual connection +.AZ)
The key feature of Ashtekar’s formulation of general relativity [1] is the introduction of a self-dual
connection as one of the basic dynamical variables.
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Ashtekar variables (New variables) [1]: Box 2.6
The geometry in the Ashtekar formulation is expressed by the pair of new variables, (£, A%).

e self-dual connection (Ashtekar connection)
We define so(3,C) connections

Al 0l T K
A, =w, F S€ IK WL (2.66)
where w{[’ is a spin connection 1-form (Ricci connection), W{[} = EI"V,E;]. Ashtekar’s

plan is to use only the self-dual part of the connection *AZ and to use its spatial part *.4%
as a dynamical variable. Hereafter, we simply denote +Aﬁ as A

e densitized inverse triad E},

E! .= eE!, (2.67)
where e := det £} is a density.
This pair forms a canonical set.
For later convenience, we denote the relation,
2 = det g;j = det B = (det E®)? = (1/6)e™ ¢, EL B} EF, (2.68)

where €5, 1= eabCEfE;’Eg and €5 1= eileijk. 6

In the case of pure gravitational spacetime with cosmological constant A, the Hilbert action takes

the form

TSAE,TA] = / d*z[(0p AN E} + N C + N Cosi + Af Caal, (2.69)

where NV := e !N. The latter terms are understood as Lagrange multipliers (A%, N*, and N) and

their accompanied constraints, Cg ~ 0,Cp; =~ 0 and Cq, =~ 0, which are

Cr = (i/2)e BIE[FS —2A det E (2.70)
Cyvi = FE] (2.71)
Coa = DiE} (2.72)

where FJj, 1= 23[#,4,‘3] — 3%, AZA,‘i is the curvature 2-form, and D¢E~g = 8iEZ — deqp” A?Eg’.

SWhen (4,7, k) = (1,2,3), we have ¢ = e, €ijk =1, €% =71 and E9F =1,
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The Ashtekar formulation [1]: Box 2.7
The dynamical variables are (E¢, A%).

i

Azq = w?a_§€ be 7, :_Kl]EJ _56 be i?c (273)
E! = eE! (2.74)

e The evolution equations for a set of (E%,.A?) are
HE. = —iDj(e®, NEIE}) + 2D;(NVED) + iAbes E (2.75)
Ay = —ie® CNEJFC —|—N]Fa + D; Ag +2ANeé;, (2.76)
where D; X7 := 0; XJ" — ieabcA?Xgi, and Fj := 20 A% — i€y A?A;.

o Constraint equations: (Hamiltonian, momentum and Gauss constraints)

it = (i/2)e"  ELE]FS — 2A det E =~ 0, (2.77)
Cail = FAEI~0, (2.78)
cASH .= DEl ~0. (2.79)

e Gauge variables are the lapse function IV, the shift vector N ¢ and the triad lapse Ag.

The set of (E!, A%) forms a canonical relation,

{Ea(@), Bj(w)} = 0, (2.80)
{A%(2), B} ()} = i6,0%0(x —y), (2.81)
{A%(x), A ()} = 0. (2.82)

The dynamical degrees of freedom are summarized in Table 2.5.

covariant vars. canonical vars. gauge conditions gauge vars.
By (16) | =] B, (9) Eg=0() N'@3) + N
Twib (12) | = A% (9) Ag (3)

Table 2.5: Dynamical degrees of freedom.

2.2.3 Einstein vs. Ashtekar

Let us compare the features of Ashtekar’s formulation of general relativity with the conventional one.
See Table 2.6 for brief summary.

From the viewpoint of classical dynamics
If we apply this formulation to the time evolution of Lorenzian space-time, the bottleneck is the
additional constraint Cg and the reality conditions.
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Einstein theory Ashtekar theory

purely geometrical theory gauge theoretical features
2nd order derivative theory 1st order derivative theory
dynamical eqs are non-polynomial dynamical els are polynomial

dynamical eqs are (weakly) hyperbolic
does contain the inverse of variables | does not contain the inverse of variables
does not admit degenerate metric does admit degenerate metric

constraints are Cy and Cag additional constraint, Cg

additional “reality condition” to recover real geometry

Table 2.6: Einstein vs Ashtekar theories

e Additional gauge variables (A%)
When we consider the space-time evolution as foliations of space-like hypersurfaces, the ADM
formulation says that we have gauge freedoms which are expressed with the lapse function, a or
N, and with the shift vector, 3" or N*. In Ashtekar’s theory, there is additional gauge variable,
A§, which we named “triad lapse” 7. This freedom appears due to the introduction of the
internal indices. We somehow have to spacify Aj in a proper manner. See Fig. 2.2.

ADM evolution Ashtekar evolution
a 11

9ij» Kij A“E%¢é

7 t=ty+ At -

'3 1 1

T OZ, 6 * 057 6 9 AO

I IA‘? E!
9ijs Kij t—=t, | i) a/

Figure 2.2: Concept of time evolution of space-time: foliations of 3-dimensional hypersurface. The
lapse and shift functions are often denoted o or N, and * or N*, respectively.

e Additional “Gauss constraint” (Cg)
In ADM formulation, we have Hamiltonian (scalar) and momentum (vector) constraint equa-
tions. These are the first-class, and we have to solve these 4-equations when we prepare the
initial data for time evolutions.

In Ashtekar’s theory, we have additional Gauss constraint (Cg), which has 3 components. The
set of constraints forms the first-class, therefore we have to solve them when we prepare the
initial data.

e Reality conditions to recover classical GR
We have to consider the reality conditions when we use this formalism to describe the classical
Lorentzian spacetime. The reality conditions are, so far, posed on the metric or the triad.

Fortunately, the metric will remain on its real-valued constraint surface during time evolution
automatically if we prepare initial data which satisfies the reality condition]6].

More practically, we further can require that triad is real-valued. But again this reality condition
appears as a gauge restriction on Ag[9], which can be imposed at every time step.

"Actually, HS asked Ashtekar to name this variable, and he named it after a minute.
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From the fact that the reality of the spacetime is conserved if we solve reality conditions initially,
so we propose to prepare ADM initial data for evolution in Ashtekar’s variables by transforming
variables and introducing internal variables as they satisfy Cg.

evolution

Figure 2.3: Images of constraints, as a solution space in the Einstein manifold. (Left) The ADM
approach has two constraints, Cy and Cpy;, which specify a solution so as it satisfies the Einstein

equations. (Right) The Ashtekar formulation has another constraint, Cg,, and reality condition.

In our actual simulation, we prepare our initial data using the standard ADM approach, so that
we have no difficulties in maintaining these reality conditions.

ADM formulation

connection formulation

Re(metric) Re(triad)
Yo ()
variables Yij 6 E! 18 E! 18 (9)
K 6 Ag 18 Ag 18 (9)
N 1 N 1 N 1(1)
gauge N 3 N 3 N 3 (3)
¢ 6 EC)
Cu 1 Cu 1 Cr 1(1)
constraints Curi 3 Cusi 3 Cuyi 3(3)
Cia 6 Cea 6 (3)
reality condition primary 6 (Xp) | primary 9 (0)
secondary 6 (Xp) | secondary 6 (0)
GW freedom 2x2 2x2 2x2

Table 2.7: Number of components in actual simulations. We here count the numbers of freedom in
components, i.e. one complex number has two components.

2.2.4 Reality conditions

Notice that the metric in Ashtekar’s formulation is not necessary to be real. In order to recover the
real metric, we must impose the reality conditions.

To ensure the metric is real-valued, we need to impose two conditions; the primary is that the
doubly densitized contravariant metric 7% := e24% is real,

S(ELET) =0,

(2.83)
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and the secondary condition is that the time derivative of 4% is real,
S{8y(ELE)} = 0. (2.84)

Using the equations of motion for E! (2.75), the Gauss constraint (2.79) and the primary reality
condition (2.83), we can replace the secondary condition (2.84) with a different constraint

Wi = R(e™EFEIDLED) ~ 0, (2.85)

which fixes six components of A¢ and E}l Moreover, in order to recover the original lapse function
N := Ne, we demand J(N/e) = 0, i.e. the density e be real and positive. This requires that e* be

positive, i.e.
detE > 0. (2.86)
The secondary condition of (2.86),
[0 (detE)] = 0, (2.87)

is automatically satisfied (see [9]). Therefore, in order to ensure that e is real, we only require (2.86).
Rather stronger reality conditions are sometimes useful in Ashtekar’s formalism for recovering the
real 3-metric and extrinsic curvature. These conditions are

2y = 0 (2.88)
and $(Ei) = 0, (2.89)
and we call them the “primary triad reality condition” and the “secondary triad reality condition”,
respectively. Using the equations of motion of E!, the Gauss constraint (2.79), the metric reality
conditions (2.83), (2.84) and the primary condition (2.88), we see that (2.89) is equivalent to [9]

. 1 - . )
R(AG) = ;(N)E™ + 56—1e§JyEﬂaajE,§ + N'R(AY). (2.90)

From this expression we see that the second triad reality condition restricts the three components
of “triad lapse” vector A§. Therefore (2.90) is not a restriction on the dynamical variables (A¢ and
E}l) but on the slicing, which we should impose on each hypersurface. Thus the second triad reality
condition does not restrict the dynamical variables any further than the second metric condition does.

2.2.5 Trick for passing a degenerate point

Next, we examine the possibilities of passing a degenerate point. A ‘degenerate point’, we use here,
is defined as the point in the spacetime where the density e of 3-space vanishes. In the Ashtekar
formulation, all the equations do not include any inverse of e apparently, so that we expect we can
‘pass’ such a degenerate point.

In order to say ‘pass’ degenerate points, we start from requiring the finiteness of the fundmental
variables (and their derivatives), Efl, A%, N/e, N*, A2, and the condition that the calculation must be
finished in finite coordinate time. Although these are natural conditions for pursuiting the evolutions
of spacetime, we concluded that continuing evolutions including a degenerate point in its foliation of 3-
space is generally break one of above conditions. The difficulties are that the term wibc in A¢ diverges
generally and a requirement of finite coordinate time fails when we pass a degenerate point. This
means generally we face a trouble when we pass a degenerate point directly in Lorentzian spacetime
even if we use Ashtekar’s variables.
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However, since the variables are originally defined as complex numbers, if we are allowed to break
the reality condition locally in the neibour of a degenerate point, which we also assume its degeneracy
exists only on the real section of spacetime, then we can ‘pass’ a degenerate point by such a ‘deformed
slice approach’. Note that, in our proposal, the foliation maintains 3 + 1 dimensions R> x R in C*.

In order to recover a real metric spacetime again later, we have to impose ‘reality recovering
condition’ on the foliation, which requires us to determine shooting parameters in complex part of
gauge variables. We showed this technique actually works, by demonstrating a numerical evolution
for an analytic solution of degenerate point in flat spacetime[8]. We see that the time evolution does
work properly in the sense that the real part of evolution recovers the analytic evolutions and the
imaginary part of metric vanishes asymptotically.
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2.3 BRTDHZET (Higher-dimensional ADM formulation)
2.3.1 Application to N + 1-dimensional space-time

Let us describe how the ADM equations turns to be in higher-dimensional cases. The set of equations
are shown in [1] in the context of constraint propagation equations.

The Standard ADM formulation in N + 1-dim. [1] Box 2.6
The fundamental dynamical variables are (7;;, K;j), the N-metric and extrinsic curvature. The
N-hypersurface ¥ is foliated with gauge functions, (c, 8°), the lapse and shift vector.

e The evolution equations:

Ovij = —2aK+ DB+ Dif;, (2.91)
8tKij = OZ(N)RZ']' + OZKKU - 204K£J-Kl‘g — DiDjOé + ﬁk(DkKij) + (D]ﬂk)sz + (Dzﬂk)Kkj
2c 1

where K = K*;, and o )Rij and D; denote N-dimensional Ricci curvature, and a covariant
derivative on the three-surface, respectively.

e Constraint equations:
Hamiltonian constr. HAPM = (Np 4 K2 — Kinij —2A —2kp =0,

momentum constr. MAPM = DRI — DiK — kJ; 0,

where VR =) Rt

2.3.2 N + l-formalism in Einstein-Gauss-Bonnet gravity

As one of the application to an alternative gravity model, Gauss-Bonnet gravity is extensively studied.
Since dynamical studies have not yet been done, we first set up the ADM-type decomposition of the
equations|2].

Gauss-Bonnet action
Einstein-Gauss-Bonnet action is given by

1
S = /M dVH X /=g [%2 (R —2A + agLaB) + Lmatter (2.93)

Lop =R?* — AR ,WRM + Ryuwpo RMP7

where x? is the (N +1)-dimensional gravitational constant, R, Ruvs Ruvpe and Lyatter are the (N 41)-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian, respec-
tively. This action will reproduce the standard (N + 1)-dimensional Einstein gravity, if we set the

coupling constant agp(> 0) equals to zero. 8

8The Greek indices (s, vy+-+) move 1,--- N + 1, while the Latin indices (¢, j,---) move 1,--- N.
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The action gives the gravitational equation

G + acsHuw = K> T (2.94)
where
1
g;w = R,uzz - ig;wR + Ag;wa
1
Huw = 2 |[RRyuw = 2RyuaR% = 2R Ryas + Ry Ruaps| = S Lan,
5L
7;“’ = 72(;;%2361" + gp,l/[*matter-

Projections to Hypersurface Yy (spacelike or timelike)
The projection operator,

Ly = g —enyny, nunt =c¢ (2.95)
where n, is the unit-normal vector to ¥ with n,, is timelike (if ¢ = —1) or spacelike (if ¢ = 1). ¥ is
spacelike (timelike) if n,, is timelike (spacelike).

The induced N-dimensional metric 7;; is defined by ~;; = L;;.
The projections of the gravitational equation:

(Guw +agpHuw)ntn” = K2 Ty ntn” =: k2 pH, (2.96)
(Guv + agHu)nf LY, = K Tyt LY = —k%J, (2.97)
(Guv + M) LW LY = w2 Ty LH 1Y, =t £2S,,, (2.98)

where we defined
Ty = panyny + Jyny + uny + S, T = —pa + St
Introduce the extrinsic curvature Kj;;
1
Kij = —gLnhij = —1%1° Vang, (2.99)

where £, denotes the Lie derivative in the n-direction and V and D; is the covariant differentiation
with respect to g, and ;;, respectively.

e Projection of the (N + 1)-dimensional Riemann tensor onto ¥y

Gauss eq. Rapys 19 J_ﬁj J_’yk J_‘sl = Rjjp — e K Kj; + e Ky Ky, (2.100)
Codacci eq.  Ragys L% L7 17 n® = 2D Ky, (2.101)
Raprs L% 1L nPnd = £,Ki + Ky K, (2.102)

e Curvature relations
Ruvpe = Ruvpo — E(KM,KZ,U K oKyp—nuD,Kyo +1, Do Kpy +n,Dp Ko — 1y Do Ky,
—n,DuKye +1,D, Ko + 16Dy Ky —ngDyK,p)
+nun, K o K, — nungKl,aK% —nynpKua K + n,,naKuaKC;)
+nunp£nKye — e £nkKyp — nunpy £y Ko +nyne £nK,p, (2.103)

R = Ry —|KKu = 2K,a K + 1y, (DoK' — D,K) +n, (DoK', — DK )|
—i—nunl,KagKaﬂ +eln Ky + nunyfyaﬁi’nKQB, (2.104)

R = R—e(K?—-3K.,3K — 27 £, K,p). (2.105)
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N + 1 Einstein-Gauss-Bonnet equations [2] Box 2.7
Substituting (2.103)-(2.105) into (2.95) or (2.5)-(2.7), we find:

(a) dynamical equations for ~;;:

1
M;; — §M7ij —e(—KiaK% + Yii KapK® — £, K + iy £ Kap)

+20qp | Hij + e(M £,Kij = 2M;* £ Koy — 2M" L0 Ko = Wy £ K )| = £ T

%

(b) Hamiltonian constraint equation:

M + agp(M? — AMgyM® + MpegM®?) = —2ex*T,,nFn”

(¢) momentum constraint equation:

Ni + 2agp (MN; = 2M;* Ny + 2M® Nigy = M; * Nope ) = —1* Ty

Mijii = Riju — (K Kj — Ky Kjy,)
My = Mgy = Rij — e(KKij — Kia K%)
M = My =R —e(K? — Kz K%)
Nijk = DiKj, — DjKi
Ni = Y*Naip = DoK;" — DiK
Wi = My — 2Miy " — 295 MM 4 2 Mg 57 4"
Hij = MMy —2(MM% + M®M;qj) + MigpeM;*

1
—2¢ |- K K M;; — S MEiaK" + Kio KGMY; + Kjo KM + KK " Mg

1
+NiNj — N*(Naij + Naji) — §NabiNal}

1
_Z%j [M2 _ 4MabMab + Mabchade]

— Nigp N,

—7ij [Kap KM — 2Mp KK > — 2N, N® + Ny N?]
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