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Why Numerical Relativity?
Overview of Numerical Relativity
Gravitational Wave Physics (Why Blackholes/Neutron Stars?)

2. The Standard Approach to Numerical Relativity —
The ADM formulation

3. Alternative Approaches to Numerical Relativity / y
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The Einstein equation

r geodesics 4—‘

spacetime curvature ——» matter distribution
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Geometry within (grey) and around (white) a star of radius R = 2.66M, schematically displayed. The
star is in hydrostatic equilibrium and has zero angular momentum (spherical symmetry). The two-
dimensional geometry

ds® = [1 = 2m(r)/r]"" dr* + r* d*

of an equatorial slice through the star (f = #/2, 1 = constant) is represented as embedded in Euclidean
3-space, in such a way that distances between any two nearby points (r, ¢) and (r + dr, ¢ + {I.flf}] are
correctly reproduced. Distances measured off the curved surface have no physical meaning; points off
that surface have no physical meaning; and the Euclidean 3-space itself has no physical meaning. Only
the curved 2-geometry has meaning. A circle of Schwarzschild coordinate radius r has proper circum-
ference 2zr (attention limited to equatorial plane of star, # = 7/2). Replace this circle by a sphere of
proper area 4zr®, similarly for all the other circles, in order to visualize the entire 3-geometry in and
around the star at any chosen moment of Schwarzschild coordinate time ¢, The factor [1 = 2m(ry/r]™!
develops no singularity as r decreases within r = 2M, because m(r) decreases sufficiently fast with decreas-
ing r.
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Figure 31.5.

(a) The Schwarzschild space geometry at the “moment of time™ ¢ = v = 0, with one degree of rotational
freedom suppressed (0 = %/2). To restore that rotational freedom and obtain the full Schwarzschild
3-geometry, one mentally replaces the circles of constant 7 = (3% 4 7)7 with spherical surfaces of aren
472, Note that the resultant ometry becomes Mt (Euclidean) far from the throat of the bridge in
both dircctions (both “universes™).

(b) An embedding of the Schwarzschild space peametry at “time” ¢ = v = 0, which is geometrically
identical 1o the embedding (1), but which is topologically different. Einstein's field equations fix the
local geometry of spacetime, but they do not fix its topology: see the discussion at end of Box 27.2.
Here the Schwarzschild “wormhole” conneets two distant regions of a single, asymptotically flat universe.
For a discussion of issues of causality associated with this choice of topology, see Fuller and Wheeler
(1962).




The Einstein equation:

1
R, + QQ/WR + ANg, = 87GT), (1)

What are the difficulties? (# 1)
e for 10-component metric, highly nonlinear partial differential equations.

e completely free to choose cooordinates, gauge conditions, and even for decom-
position of the space-time.

e mixed with 4 elliptic eqs and 6 dynamical eqs if we apply 3+1 decomposition.

e has singularity in its nature.

How to solve it?




"First, we assume a spherical cow..."

There is an old joke about a theoretical physicist who was charged with figuring out how to
Increase the milk production of cows. Although many farmers, biologists, and psychologists had
tried and failed to solve the problem before him, the physicist had no trouble coming up with a
solution on the spot. "First," he began "we assume a spherical cow..."
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How to solve the Einstein eq?

e find exact solutions

— assume symmetry in space-time, and decomposition of space-time
spherically symmetric, cylindrical symmetric, ...

— assume simple situation and matter

time-dependency, homogeneity, algebraic speciality, ...

We know many exact solutions (O(100)) by this

® approximations

— weak-field limit, linearization, perturbation, ...

" Spherical Cow”

approach.

We know correct prediction in the solar-system, binary neutron stars, ...

We know post-Newtonian behavior, first-order correction, BH stability, ...

Black-holes, Cosmology, weak-field limit, ... | but more interesting issues?




Why don’t we solve it using computers?
e dynamical behavior, no symmetry in space, ...

e strong gravitational field, gravitational wave! ...

Numerical Relativity Box 1.1
= Solve the Einstein equations numerically.
= Necessary for unveiling the nature of strong gravity.

For example:
e gravitational waves from colliding black holes, neutron stars, supernovae, ...
e relativistic phenomena like cosmology, active galactic nuclei, ...
e mathematical feedback to singularity, exact solutions, chaotic behavior, ...

e laboratory for gravitational theories, higher-dimensional models, ...

The most robust way to study the strong gravitational field. Great.



Lecture Note at APCTP winter school 2003: H.Shinkai

1.2 Overview of Numerical Relativity

Several milestones of NR
New proposals, developments, physical results.

1960s

1970s

1980s

1990

1995

2000

Hahn-Lindquist
May-White
OMurchadha-York

Smarr
Smarr-Cades-DeWitt-Eppley
Smarr-York

ed. by L.Smarr
Nakamura-Maeda-Miyama-Sasaki
Miyama

Bardeen-Piran
Stark-Piran
Shapiro-Teukolsky
Oohara-Nakamura
Seidel-Suen

Choptuik

NCSA group

Cook et al
Shibata-Nakao-Nakamura
Price-Pullin

NCSA group

NCSA group

Anninos et al
Scheel-Shapiro-Teukolsky
Shibata-Nakamura
Gunnersen-Shinkai-Maeda
Wilson-Mathews
Pittsburgh group
Brandt-Briigmann

Illinois group
Shibata-Baumgarte-Shapiro
BH Grand Challenge Alliance
Baumgarte-Shapiro
Brady-Creighton-Thorne
Meudon group

Shibata

York

Brodbeck et al
Kidder-Finn
Shinkai-Yoneda

AEI group

AEI group

Shibata-Uryu
Shinkai-Yoneda

Meudon group

PennState group

2 BH head-on collision

spherical grav. collapse

conformal approach to initial data
3+1 formulation

2 BH head-on collision

gauge conditions

“Sources of Grav. Radiation”
axisym. grav. collapse

axisym. GW collapse

axisym. grav. collapse

axisym. grav. collapse

naked singularity formation

3D post-Newtonian NS coalesence
BH excision technique

critical behaviour

axisym. 2 BH head-on collision

2 BH initial data

BransDicke GW collapse

close limit approach

event horizon finder

hyperbolic formulation

close limit vs full numerical
BransDicke grav. collapse

3D grav. wave collapse

ADM to NP

NS binary inspiral, prior collapse?
Cauchy-characteristic approach
BH puncture data

synchronized NS binary initial data
2 NS inspiral, PN to GR
characteristic matching
Shibata-Nakamura formulation
intermediate binary BH
irrotational NS binary initial data
2 NS inspiral coalesence
conformal thin-sandwich formulation
A-system

BH, Spectral methods

planar GW, Ashtekar variables
full numerical to close limit

2 BH grazing collision

2 NS inspiral coalesence

adjusted ADM systems
irrotational BH binary initial data
isolated horizon

AnaPhys29(1964)304
PR141(1966)1232
PRD10(1974)428
PhD thesis (1975)
PRD14(1976)2443
PRD17(1978)2529
Cambridge(1979)
PTP63(1980)1229
PTP65(1981)894
PhysRep96(1983)205
unpublished
PRL66(1991)994
PTP88(1992)307
PRL69(1992)1845
PRL70(1993)9
PRL71(1993)2851
PRDA47(1993)1471
PRD50(1994)7304
PRL72(1994)3297
PRL74(1995)630
PRL75(1995)600
PRD52(1995)4462
PRD51(1995)4208
PRD52(1995)5428
CQG12(1995)133
PRL75(1995)4161
PRD54(1996)6153
PRL78(1997)3606
PRL79(1997)1182
PRD58(1998)023002
PRLS0(1998)3915
PRD59(1998)024007
PRD58(1998)061501
PRL82(1999)892
PRD60(1999)104052
PRL82(1999)1350
JMathPhys40(1999)909
PRD62(2000)084026
CQG17(2000)4729
CQG17(2000)L149
PRL87(2001)271103
PTP107(2002)265
CQG19(2002)1027
PRD65(2002)044020
gr-qc/0206008



Numerical Relativity — open issues Box 1.2

0. How to foliate space-time
Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

=> if the foliation is (3 + 1), then - --

1. How to prepare the initial data

Theoretical: Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Numerical: Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical: Free evolution or constrained evolution?
Proper formulation for the evolution equations? = see e.g. gr-qc/0209111
Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction? Connection to other approximations?

Numerical: Identification of black hole horizons? Visualization of simulations?




First Question: How to foliate space-time?

Cauchy approach Characteristic approach
or ADM 3+1 formulation (if null, dual-null 2+2 formulation)

time direction
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Toward Direct Detection of
Gravitational Wave

GW 1s produced by coalescing
Black-holes and/or Neutron St

Laser Interferometers

r JAPAN 300m 2000-
USA A4Km/2Km  2002-
GermanyUK 600m 2002-
ItalyFrance 3Km 2003-

« Neutron star — neutron star ¢Centrella et al.)




Binary Pulser PSR 1913+16 (Neutron Star *2)

Indirect Proof of Gravitaional Wave emission
1974, R. Hulse and J. Taylor found by radio ==> 1993 Nobel Prize
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WAVEFORM
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Circular Orbit?

Post Newtonian Approx.
L— Numerical Relativity
L BH. Perturbation



What can we learn from gravitational waveform?
5 (Suppose NS+NS ->BH )

WAVEFORM
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DEPENDENCE ON ¢, FOR 6=0: ISCO freq => EoS of NS,
B waveform => Formation of BH or NS,
. . BH mass
"chirps" df/dt => chirp mass, Mc = (M1 M2)35/ (MitM2)V/5 BH angu{ar momentum, . ..

amplitude up => Mc, distance
amplitude h+/hx => inclination
waveform => eccentricity

moduration => spin, ... statistics => cosmological parameters



Requirements for Numerical Relativity
e Where to start the simulation?
e How to construct physically reasonable initial data?
e How can we evolve the system stably?
e How to treat black-hole singularity if it appears?
e How to extract gravitational wave?

e How can we manage the large-scale simulations?





