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Introduction to Numerical Relativity

RIKEN Institute, Hisaaki Shinkai

1. Subjects for Numerical Relativity E 7|‘ O| 6| /\|' O|‘ 7|
Why Numerical Relativity?

2. The Standard Approach to Numerical Relativity
The ADM formulation
How to construct initial data 1. Conformal approach
How to construct initial data 2: Thin-Sandwich approach
How to choose gauge conditions: slicing conditions
How to evolve the system: formulation problems

3. Alternative Approaches to Numerical Relativity
etc

4. Unsolved problems
etc, etc




Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation

m Preparation of the Initial Data
Assume the background metric
Solve the constraint equations

s Time Evolution
do time=1, time_end
Specify the slicing condition

Evolve the variables
Check the accuracy 2: Initial 3-dimensional Surface

time direction

Extract physical quantities
end do



The 3+1 decomposition of space-time, The ADM formulation

[1 ] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Re-
search, ed. by L.Witten, (Wiley, New York, 1962).

[2 ] JW. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

Dynamics of Space-time = Foliation of Hypersurface

e Evolution of ¢ =const. hypersurface >i(t).

time direction

ds® = gudztdx”,  (p,v=0,1,2,3)
on X(t)... df* = ~;da'da’, (i,7=1,2,3)

e The unit normal vector of the slices, n*.

n, = (—a,0,0,0) 5
n' = ¢"n, = (1/a, —ﬁi/a)

= Initial 3-dimensional Surface

e The lapse function, a.. The shift vector, 3.
ds* = —a?dt? + v;;(dz' + Bdt)(dz’ + (' dt)




The decomposed metric:

ds® = —a’dt* + v;;(dx’ + B'dt)(dz’ + B dt)
= (—a*+ BB dt* + 2B,dtda’ + ~y;da'da’

o _052 -+ ﬁlﬁl 6]' ur _1/052 ﬁj/OP
I = B; Yij | I 5i/042 ’Yij—ﬁiﬁj/‘)ﬂ

where o and (3; are defined as a = 1/4/—¢", (3, = g,

e [he unit normal vector of the slices, n*.

shift vector, pi
n'u B (_a7 O’ O’ O> ) surface norml fine Bi dt coordinate constant line
R =
f S(t+dt) /
e The lapse function, «. lapse function, o —» ¢ dt

e The shift vector, 3. / ﬁé S(t) /

/ t = constant hypersurface




Projection of the Einstein equation:

e Projection operator (or intrinsic 3-metric) to (%),

Yo = Guv + NNy
v, = o) +nfn, = L]

e Define the extrinsic curvature /¢,

KZ” p— —J_gj_?nu;y
= — (8 +nMn;) (8% + n"nj)n.,
= TNy )
= F%na = ... = 9% <—at%'j + @U + ﬂﬂi) ’

e Projection of the Einstein equation:
Gn'n” =8rGT,, n'n" =8nrpy
Gnt' L] =8rGT,,n" L =—-8nJ
G,Lw J_él J_]V = 81 Tuu J_él J_]V = 87’(’82']'

= the Hamiltonian constraint eq.
= the momentum constraint egs.
= the evolution egs.



The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, ;;), the three-metric and extrinsic
curvature. The three-hypersurface Y is foliated with gauge functions, («, 3'), the
lapse and shift vector.

e The evolution equations:
Oryij = —2aK;+ Dif;+ D;f;,
(9tKij = (3)Rij -+ OKKKZ']‘ — QOéKZ'kKkj — DZ'DJ'O(
+(D;B") Ky + (D;8°) Kii + 8" DiK;
—8rGa{Si; + (1/2)vi;(py — trS)},

where K = K%, and (3)Rij and D; denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM .— OGR4 K2 — KZ-]-KU ~ (),
momentum constr. M?DM = DjKjZ- — D;K =~ 0,

where GIR =0B) R




Original ADM | The original construction by ADM uses the pair of (h;;, 7).

g 1
L = v/—gR=VhN[®R - K* + K;K"), where K;; = S £uhi
then i1 — OF — Vh(KY — Kh¥),
Ohi;

The Hamiltonian density gives us constraints and evolution egs.

H = mh; — £ =Vh{NH(h,7) = 2N;M’(h, 7) + 2D;(h™ Ny},

oH N 1
y . 1
Ol = — Sy —VhN(PRY — URh”) 5 \/_h”(wmnwm” 2w2)—2\/ﬁ(wmﬂnf_2mw)
+Vh(D'D'N — thmD mIN) 4+ VhD,,(h~\ 2N 7ii) — 27D, NJ)

Standard ADM (by York) | NRists refer ADM as the one by York with a pair of (h;;, K;;).

athij — —QNKZ] —|— D]NZ —|— DiNj,
0iKij = N( PR+ KK;j) —2NKyK'; — D;D;N + (D;N™) Ky + (D;N™)Kp,; + N™ Dy, K

In the process of converting, H was used, i.e. the standard ADM has already adjusted.




strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime. shift vector, B!
Evolve 12 variables (v;;, Ki;) surface normal line i/ : :
BY dt coordinate constant line

with a choice of gauge condition/ ,
A" A'
A A B(t+dt) /

lapse function, ¢, — (y 4t /

P -/ w7

A
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
i — (3) 2 _ KU —
constraints d!v E = 47p R+ (trK)* — Kj; KY = 2rppg + 2/
div B =0 DjKJZ- — DZtI“K = /ﬁJJZ‘
Lo = rot B— 2T | Oy = —2NKy + DN + DN,
. ¢ ¢ | 0K;; = N(®R;; + ttKK;;) —2NKyK', — D;D;N
evolution egs. o - .
1 + (DJN )sz + (DZN )ij + N DmKij — N’}/Z]A
OB =—rot E — ke Sij + 371 (pir — t1S)}




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = B (0;H) + 2aKH — 2" (O;M;)
+04(6Z’Ymk><2’7m17kj - mG’ylj>Mj - 47ij(aj04>Miv
OM; = —(1/2)a(0H) — (Bi0)H + F(O;,M;)
+aKM; — 8" (0ryi) M + (0:8:)7" M;.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is not true in numerics....




Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation

Need to solve elliptic PDEs

: . -- Conformal approach
m Preparation of the Initial Data - Thin-Sandwich approach

Assume the background metric s

Solve the constraint equations 4

s Time Evolution
do time=1, time_end
Specify the slicing condition
Evolve the variables
Check the accuracy
Extract physical quantities
end do



Initial Data Construction Problem

Prepare all metric and matter components by solving the two constraints:

e The Hamiltonian constraint equation

(3)R -+ (tI’K)2 — KZ']'KU = 2/1,0 -+ 2/\

e [he momentum constraint equations

Di(K"7 —~"rK) = kJ'

We have 12 variables (v;;, K;;) to fix, but only 4 constraints. ... How?




1st method | Conformal Approach — York-OMurchadha (1974)

N.OMurchadha and J.W.York Jr., Phys. Rev. D 10, 428 (1974)

The key idea is| solution ~;; = ¢*9;;  trial metric.

e the decomposition of K;;,

trK =YK, trace part

Ki; =
! A=K — évz-jtrK trace-free part

e conformal transformations:

Vij = 1@4%& v = ¢_4ﬁi‘77
i —10 Aii 94
AV =y T AY, Ay =y Ay,

p=v7p, =y
® we suppose

trK = trK, trA =1trA = 0.



e we then get
[y = T+ 20710, Dy + 8" Dyt — 43y D),
R = ¢y 'R — 8y °Av.
where A = 49%D; Dy and R = R(%), and also D; A" = 1)~10D; A,
e decompose A% to transverse-traceless (TT) part and longitudinal part:
AV = Al o+ (W)Y

—_———

divergence-free longitudinal
DiAr =0, trArr =0, and (IW)7 = D'W/’ + D’W' — gkaW’f.
e Using these terms, we can write
D;AY = D;AW)7 = (AW)' = (AW) + (1/3)D'(D;W7) + R ;W
With above transformation, the two constraints becomes

e The Hamiltonian constraint equation

8AYp = Ryp — (Ajj AV )7 +

2 = 4
[3(trK)2 — 2AJy° — 167G pyp° "

e The momentum constraint equations

N R . 2 . N
AW + gDZDkWA + R W = ng@trK + 871G J"’



Conformal approach (York—()Murchadha, 1974)
One way to set up the metric and matter components (v;;, K;;, p, J') so as to satisfy
the constraints:

1. Specify metric components 7;;, tri, AZT and matter distribution p, J in the

conformal frame.
2. Solve the next equations for (¢, W)
SAY = Rep — (Ay A0~ 4+ [(2/3)(trK)? — 2A10° — 167G py® " (1)
AW+ (1/3)D'DW* + R* W* = (2/3)ySD'tr K + 87G.J! (2)
where Al = Allp + D'WJ + DIW' — (2/3)37 D, W*.
3. Apply the inverse conformal transformation and get the metric and matter com-
ponents ;;, K, p, J' in the physical frame:

Yij = ¢4’%j1 A
Ki; = ¢ [AL + (IW)] + (1/3)¢",trK,
p=v"p,

Ji = o710 ]




Comments

e Using the idea of conformal rescaling, we have a way to fix 12 components of
(7i5, K;;) that satisfy 4 constraints.

e The Hamiltonian constraint, (3), is a non-linear elliptic equation for v, so that
we have to solve it by an iterative method.

e The momentum constraints, (3), are PDEs for W' and coupled with (3). If
we assume tr/A = (), then two constraints are decoupled. Normally people as-
sume | trK = 0 | (maximal slicing condition) or (trK) =const. (constant mean
curvature slicing) for this purpose.

e For simplicity, people assume the background metric 7;; is conformally flat | 7;; = 0;; |

The physical appropriateness of conformal flatness is often debatable.

e Two freedom of AET corresponds to the one of gravitational wave. However,
there have been no systematic discussion how to specify them, except applying
tensor harmonics in a linearized situation.



Numerical procedures — Several tips

Solving the Hamiltonian constraint
R . . . 2R .
8AY = Rip — K" Kifp ™"+ 3K2 WY — 167G py° "
1. Solve the non-linear equation directly.

2. Solve the linearized equation ¢ = 1)y + 0 iteratively

SAY = EY+Fo "+ G+ Hp S+ T~}
— [E — TFy® + 5Gy — 3Hy* — 21y 2| + [8EFy " — 4Gy + 4Hpy® + 21,

Under an appropriate boundary condition, such as Robin BC ¢ = 1 + const./r, or Dirichlet BC
w =1 + Mtotal/QT-



Solving the momentum constraints
. 1 . . : : 9 A A
(AW)' +  D'D;W/ + R W = 0! D'K = 812G J

1. Solve the non-linear equations directly

2. Bowen's method for conformally flat case [GRG14(1982)1183]
Under the (V'K = 0) condition,

1 . .
AW + SVZV]-W] = 81 S".
By introducing a decomposition of W into vector and gradient terms W' = V' — ivi@,
AV' = 8rS",
A = V, V",

If the source is of finite extent, then the the asymptotic behavior of V* and € are given by

| o 1
Vo= _ZZQh ]Lnjl .. 'njzﬁ7
1=0 r
o 1 > 2(1+1) lir i 1 20 —=1
g = — {m“']zq}i . Tl o =yt Jlfl}l. e m
; Q Ty - Mgy -1 T Z(:) (20 +1)(20 + 3) k Tujy == Ty S + ; 20+ 1 TNy = Mgy
where n® = 2! in the Cartesian cordinate, the multipoles Q and M are defined as
L 20 — Nl , o ,
Qi = ( 0 ) /S’(r)x{]lx” . x”}dV,
Mijl"'jl _ (2l ; 1)” /rQSi(r)l’{jll’jz . l’jl}d‘/,

and where brackets denote the completely symmetric trace-free part

gli-at — zliji-g) _ l Z’]:(jl"'jlfl(sjli)

20+1

1
pl+1
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Lecture Note at APCTP winter school 2003: H.Shinkai

1.2 Overview of Numerical Relativity

Several milestones of NR
New proposals, developments, physical results.

1960s

1970s

1980s

1990

1995

2000

Hahn-Lindquist
May-White
OMurchadha-York

Smarr
Smarr-Cades-DeWitt-Eppley
Smarr-York

ed. by L.Smarr
Nakamura-Maeda-Miyama-Sasaki
Miyama

Bardeen-Piran
Stark-Piran
Shapiro-Teukolsky
Oohara-Nakamura
Seidel-Suen

Choptuik

NCSA group

Cook et al
Shibata-Nakao-Nakamura
Price-Pullin

NCSA group

NCSA group

Anninos et al
Scheel-Shapiro-Teukolsky
Shibata-Nakamura
Gunnersen-Shinkai-Maeda
Wilson-Mathews
Pittsburgh group
Brandt-Briigmann

Illinois group
Shibata-Baumgarte-Shapiro
BH Grand Challenge Alliance
Baumgarte-Shapiro
Brady-Creighton-Thorne
Meudon group

Shibata

York

Brodbeck et al
Kidder-Finn
Shinkai-Yoneda

AEI group

AEI group

Shibata-Uryu
Shinkai-Yoneda

Meudon group

PennState group

2 BH head-on collision

spherical grav. collapse

conformal approach to initial data
3+1 formulation

2 BH head-on collision

gauge conditions

“Sources of Grav. Radiation”
axisym. grav. collapse

axisym. GW collapse

axisym. grav. collapse

axisym. grav. collapse

naked singularity formation

3D post-Newtonian NS coalesence
BH excision technique

critical behaviour

axisym. 2 BH head-on collision

2 BH initial data

BransDicke GW collapse

close limit approach

event horizon finder

hyperbolic formulation

close limit vs full numerical
BransDicke grav. collapse

3D grav. wave collapse

ADM to NP

NS binary inspiral, prior collapse?
Cauchy-characteristic approach
BH puncture data

synchronized NS binary initial data
2 NS inspiral, PN to GR
characteristic matching
Shibata-Nakamura formulation
intermediate binary BH
irrotational NS binary initial data
2 NS inspiral coalesence
conformal thin-sandwich formulation
A-system

BH, Spectral methods

planar GW, Ashtekar variables
full numerical to close limit

2 BH grazing collision

2 NS inspiral coalesence

adjusted ADM systems
irrotational BH binary initial data
isolated horizon

AnaPhys29(1964)304
PR141(1966)1232
PRD10(1974)428
PhD thesis (1975)
PRD14(1976)2443
PRD17(1978)2529
Cambridge(1979)
PTP63(1980)1229
PTP65(1981)894
PhysRep96(1983)205
unpublished
PRL66(1991)994
PTP88(1992)307
PRL69(1992)1845
PRL70(1993)9
PRL71(1993)2851
PRDA47(1993)1471
PRD50(1994)7304
PRL72(1994)3297
PRL74(1995)630
PRL75(1995)600
PRD52(1995)4462
PRD51(1995)4208
PRD52(1995)5428
CQG12(1995)133
PRL75(1995)4161
PRD54(1996)6153
PRL78(1997)3606
PRL79(1997)1182
PRD58(1998)023002
PRLS0(1998)3915
PRD59(1998)024007
PRD58(1998)061501
PRL82(1999)892
PRD60(1999)104052
PRL82(1999)1350
JMathPhys40(1999)909
PRD62(2000)084026
CQG17(2000)4729
CQG17(2000)L149
PRL87(2001)271103
PTP107(2002)265
CQG19(2002)1027
PRD65(2002)044020
gr-qc/0206008



2nd method | Thin-Sandwich Approach — York (1999)

J.W.York Jr., Phys. Rev. Lett. 82, 1350 (1999)
Benefits:

e The name “sandwich” comes from the proposal that this method prepares two
spatial slices at t = 0 and ¢t = At.

e The input function is more friendly (3-metric and its time derivative) than the
previous conformal approach.

e The input quantity also requires the lapse function, N. (Actually this is the
inverse and densitized lapse function. )

e The similar conformal transformation is applied. But the relation AV = =10 A%
is derived in this version.

Comments:
e The numerical solvability is still debatable.

e Partial applications are seen in constructing quasi-equilibrium binary neutron
stars/black-holes.



e introduce the conformal metric g;;,

“this world” gij = Vigi; “that world”

Also impose gijé’tgij =0.
e On the second slice t = dt, we write the conformal metric

gij = Gij + wijot,

where Uiy = gija

is the velocity tensor (suppose to be a given quantity), and

also impose the “weighted” condition,

gijuij =3 and g@JgZ] — (.

e By taking the traceless part of the evolution equation,

we get

?ij_g

where A;; = Ky; — (1/3)Kg,,

e we then obtain

1 . NA;; + (LB
9,9" 9 = wij = —2N Ay + (LB);;
- M N mn.A a..D"B
and (L3);; = Dzﬂj +D;5; — (2/3>gz'jD B

0g;; = 9;; = —2NKi; + (Dif; + D; ;)

Ujj = ¢4uzj . Similarly, we obtain

Bi — ﬁia Bz — .@?462'7 N
(LB)ij = ¢4(L5)zj, (LB =~ HLB)"Y .




e We call the standard «(t,z) > 0 slicing function, and define the lapse function

N as| N =g'2a. |. The slicing function is now & = g~/2N = N, which may

be called the inverse densitized lapse.

o Let | @ = oo || We obtain a new relation| N = ¢y°N

e We also impose | K = K | as before. Then the next relation is derived

AV = 70 2N) T (LB)Y — ]

= @N) (LB — u)) = AT thatis | AY = 1047

By using above boxed conformal transformations, two constraints become can be
transformed as

e The Hamiltonian constraint equation (the same with before)

) 9
80 — R(g) + Ay A" — SE - 2A]J)p° — 167Gy’ ™" =0,

e The momentum constraint equations

D, [(2N)(L)7] = D; [(2N) ] + §¢6DiK—|—87rGJi



Thin-Sandwich approach (York, 1999)
One way to set up the metricc gauge values and matter components
(9,5, Kij, N, B',p,J') so as to satisfy the constraints is as follows.

1. Specify metric components g;;, u;i(= ¢;;), KX, the lapse function N, and matter
distribution p, J' in the conformal frame.

2. Solve the next equations for (1, 3')

S~ Rlg)p + Ag ATy~ — LK = 2017~ 16nGpy™" =0, (3

D; [2N)"H(LB)"] = D, [(2N) "] + gwb’DiK +8r7G.J", (4)

where AV = (2N)~H[(LB)Y — u').
3. Apply the inverse conformal transformation and get the metric and matter com-
ponents (y,;, i, N, B',p,J') in the physical frame:

N =N, B =p,

. B 1
9i; = ngzja Kij=1 2Aij+3¢4gin7
p=v, J=y




Comments

e The two equations, (3) and (4), are coupled, but they will be decoupled if we
assume the constant mean curvature condition, (tr/X') =const. (This is the same

as the conformal approach, but we have to solve the momentum constraints first
here.)

e The (general) solvability of (4) is still debatable.



Comparison between two approaches

conformal approach

thin-sandwich approach

input gij, K, AZ;T (components: 6, 1, 2) | g;;, K, u;j, N (comp.: 6, 1, 5, 1)

functions | GW components are separated out | can specify time-derivatives

treatment | lapse and shift are not appearing in | lapse is given by the conformal trans-

of gauge | the formulation. formation.

functions shift is given by solving the
constraints.

usage of | Hamiltonian constraint is for the con- | Hamiltonian constraint is for the con-

the formal factor v formal factor v

constraints

momentum constraints are for the
longitudinal part of A;;.

momentum constraints are for shift
function 3.

counting
the
freedom

(input 9 functions) plus (3 functions
by solving momentum constraints)
12 = (3-metric) plus (extrinsic
curvature).

(input 13 functions) plus (3 functions
by solving momentum constraints) =
16 = (3-metric) plus (extrinsic cur-
vature) plus (gauge functions).




Numerical Relativity — open issues Box 1.2

0. How to foliate space-time
Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

=> if the foliation is (3 + 1), then - --

1. How to prepare the initial data

Theoretical: Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Numerical: Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical: Free evolution or constrained evolution?
Proper formulation for the evolution equations? = see e.g. gr-qc/0209111
Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction? Connection to other approximations?

Numerical: Identification of black hole horizons? Visualization of simulations?




Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation

m Preparation of the Initial Data

Assume the background metric /

Solve the constraint equations

m Time Evolution
do time=1, time_end /
Specify the slicing conditions
Evolve the variables
Check the accuracy
Extract physical quantities
end do

Need to solve elliptic PDEs
-- Conformal approach
-- Thin-Sandwich approach

singularity avoidance,
simplify the system,
GW extraction, ...




How to choose gauge conditions?

The fundamental guidelines for fixing the lapse function « and the shift vector (;:
e to avoid hitting the physical and coordinate singularity in its evolution.
e to make the system suitable for physical situation.
e to make the evolution system as simple as possible.

e to enable the gravitational wave extraction easy.



Lapse conditions

geodesic slice a=1 GOOD simple, easy to understand
BAD no singularity avoidance
harmonic slice V. Vil =0 GOOD  simplify egs.,
GOOD easy to compare analytical investigations
BAD no singularity avoidance or coordinate
pathologies
maximal slice K =0 GOOD  singularity avoidance
BAD have to solve an elliptic eq.
maximal slice K = —c*K G&B same with maximal slice,
(K-driver) GOOD  easy to maintain K =0
constant K = const. G&B same with maximal slice,
mean curvature GOOD  suitable for cosmological situation
polar slicing K+ K7 =0, o0r GOOD singularity avoidance in isotropic coord.
K=K/ BAD trouble in Schwarzschild coord.
algebraic a~ /7, GOOD easy to implement
a~ 1+ logy BAD not avoiding singularity




Maximal slicing condition

e A singularity avoiding gauge condition.

e The name of ‘maximal’ comes from the fact that the deviation of the 3-volume
V = /ﬁd‘o’x along to the normal line becomes maximal when we set K = 0.

e This is simply written as
K=0 on 3(t).

Practically, we solve
D'Dia = { YR + K? + 47G(S — 3py) — 3A}a,
or by using the Hamiltonian constraint further,
D'Dia = {K; K" + 47G(S + pg) — A}a.

e This is an elliptic equation. When the curvature is strong (i.e. close to the
appearance of a singularity), the RHS of equation become larger, hence the lapse
becomes smaller. Therefore the foliation near the singularity evolves slowly.



Maximal Slicing Condition

In Schwarzschild geometry, K=0 slicing conditions allows us to evolve r=1.5M.

‘ Horizon
2
_ &
=
T T T T T T T T —T =
=383
1.0 =
' v =150
0.8} E
0.6} 4
a t=100
04} -
0.2+ - |
4 (
/ X

4 6 4 6 > ’//////,\\\

x=(F/a)xq x=(F/a)xq ////// > \

_ @ (b) ) ) ////7%/\%\\\\\

FIG. 3. (a) The spherically symmetric lapse function a is plotted versus the dimensionless radius v =(/a)x, where 7 //% Co]]apsmg Star &\\\

is the proper radial distance from the throat and x, and @ are as defined by Eq. (3.7). These plots of & (x) are given for
a series of time slices of the symmetric maximal slices of Schwarzschild-Kruskal spacetime studied by Estabrook et

al. (Ref. 37). Notice the rapid collapse of the lapse near the throat at late times (T=<10M). Time slices are labeled by FIG. 1. A black hole spa.cetime diagram showing various
the strength parameter x, and by proper time at a large finite distance (where we set @ = 1). The curves rise more singularity avoiding time slices that wrap up around the sin-
rapidly than in Fig. 4 because this distance is not infinite. The location of the event horizon rgy, =2M is denoted by a . R B ..

dot on each slice (see Eppley, Ref. 1). (b) For the same time slices as in (a), we plot the Ricci scalar ® (x) of the gularlty inside the horizon. Such ShClngS allow short-term
three-metric of the slice. At 7=0, ® =0 from the constraint equations. It grows in the strong-field region (x =0) as success in the numerical evolution of black holes, while at

time increases. This is what forces the lapses to zero in (a). At late times the central value of ® goes to 8/9M?, the h . . hological bet . h t 1t
value of & for the hypercylinder vy, = 3M/2. The “effective radius” a [Eq.(3.7)| is found to grow linearly in time and be the same time causing pathologica ehavior that eventually

approximately the proper radial distance from the throat to the horizon in the time slice. dooms the calculation at late times.



Maximal slicing versus Harmonic slicing
A. Geyer and H. Herold, PRD31 (1995) 6182

@Q

Harmonic slicing hits singularity!

FIG. 2. The lapse on the u = 0 axis as a function of . For
harmonic slicing the “collapse of the lapse” occurs at a later
time ¢ than in the case of maximal slicing.

FIG. 3. Harmonic slices in the Schwarzschild spacetime

FIG. 1. Foliation of the Schwarzschild spacetime by maxi-  constructed from the initial lapse « = 1 on v = 0. Note

mal slices. The picture shows the projection of some £ = const  that, in contrast with Fig. 1, the whole spacetime up to the
hypersurfaces in the Kruskal plane (compare [6]). singularity (r = 0) gets covered.



Lapse conditions

geodesic slice a=1 GOOD simple, easy to understand
BAD no singularity avoidance
harmonic slice V. Vil =0 GOOD  simplify egs.,
GOOD easy to compare analytical investigations
BAD no singularity avoidance or coordinate
pathologies
maximal slice K =0 GOOD  singularity avoidance
BAD have to solve an elliptic eq.
maximal slice K = —c*K G&B same with maximal slice,
(K-driver) GOOD  easy to maintain K =0
constant K = const. G&B same with maximal slice,
mean curvature GOOD  suitable for cosmological situation
polar slicing K+ K7 =0, o0r GOOD singularity avoidance in isotropic coord.
K=K/ BAD trouble in Schwarzschild coord.
algebraic a~ /7, GOOD easy to implement
a~ 1+ logy BAD not avoiding singularity




Shift conditions

geodesic slice 3 =0 GOOD simple, easy to understand
BAD too simple

minimal min 3% Y;; GOOD  geometrical meaning

distortion BAD elliptic egs., hard to solve

minimal strain min @ij@ij G&B same with minimal distorsion




Minimal distortion condition, Minimal strain condition

L.Smarr and J.W.York,Jr., Phys.

e Against the grid-streching, minimize the distor-
tion in a global sense.

e The expansion tensor O,,: Let the
coordinate-constant congruence t, = anu—l—ﬁu.
Using the projection operator 1§ = 0 + nny,

O, = LVt
1
= —(XKMV+§D(MﬁV)

e The distortion tensor >J;;:

2ij = Oij — 5

Rev. D 17, 2529 (1978)

FIG. 7. This schematic diagram illustrates the use
of the minimal-distortion shift vector to reduce coor=
dinate shear. 0 a small sphere (here one spoatial
dimension 15 suppressed) 15 transpacted along the
normal §7 to the next slice r=d7, it will be sheared
into an ellipsoid. I the slicing is maximal, the
volume will be preserved to firat order, On the other
hand, if & shilt vector is also vaed, then some of this
coordinate shear can be remoyed « although with the B =
sible introduction of some change in volume,



The minimal distortion condition
® minimize ZUEU
1 3
5S[ﬁ] — 5{5/22322‘761356} = 0.
e T his condition can be written as DjZZ-j =0, or

. . 2 . . 1
Dijﬁi + D]Diﬁj — gDszﬂ] = D/ {20& (Kw — StTK’YZ])} ,

or
1 . . . 1
Aﬁz -+ 5D1<D‘75j> + R‘gﬁ] = D] {205 (KZJ — BtTK%j)] ,
where A = D'D;.

The minimal strain condition

e minimize ©Y0;;, similarly.



Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation

m Preparation of the Initial Data

Assume the background metric /

Solve the constraint equations

m [Ime Evolution

Need to solve elliptic PDEs
-- Conformal approach
-- Thin-Sandwich approach

singularity avoidance,
simplify the system,
GW extraction, ...

do time=1, time_end /

Specify the slicing conditions
Evolve the variables =<
Check the accuracy

Robust formulation ?

-- modified ADM

-- hyperbolization

-- asymptotically constrained

Extract physical quantities
end do






