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Abstract
In order to construct a robust evolution system against numerical instability for in-
tegrating the Einstein equations, we propose a new set of evolution equations by
adjusting BSSN evolution equations with constraints. We apply an adjustment pro-
posed by Fiske (2004) which uses the norm of the constraints, C2. The advantage of
this method is that the signature of the effective Lagrange multipliers are determined
in advance. We show this feature by eigenvalue-analysis of constraint propagations
and perform numerical tests using Gowdy wave propagation which indicates robust
evolutions against the violation of the constraints than existing formulations.

1 Introduction

In numerical relativity, it is essential to perform stable and accurate simulation. The standard way to
integrate the Einstein equations is to split spacetime into three-dimensional space and time. Arnowitt-
Deser-Misner (ADM) formulation[1] is the fundamental evolution system of spacetime decompositions.
However, it is known that this formulation is not appropriate since the constraints are not satisfied during
long-term numerical calculation and in strong gravitational field[2]. Several formulations which modified
ADM formulation are suggested, Baumgarte-Shapiro-Shibata-Nakamura(BSSN) formulation[3] is widely
used among them.

However, there exists more robust systems than the current standard BSSN system (e.g.[4, 5]) de-
pending on problems. Therefore seeking a robust evolution system against the violation of constraints is
still an important issue.

Yoneda and Shinkai[5] systematically investigated adjusted systems, which adds constraints to the
evolution equations. With this method, we can predict the stability of numerical simulation by analyzing
the eigenvalues of the coefficient matrix which is Fourier-transformed constraint propagation equations
under assuming a fixed background metric.

Fiske[6] proposed an adjustment which uses the norm of constraints, C2, and does not require the
background metric for specifying effective Lagrange multipliers and applied this method to the Maxwell
equations. A good point of his method is what the stability of the numerical simulation can be expected
without depending on background metric. We apply his method to the ADM and BSSN formulations,
and actually perform the effect of dumping by numerical simulation.

2 C2-adjusted Systems

For variables ui and constraint values Ci, evolution equations with constraint equations are generally
written as

∂tu
i = f(ui, ∂ju

i, · · · ), and (1)

Ci(ui, ∂ju
i. · · · ) ≈ 0. (2)

Suppose we adjust (1) with C2 ≡ CiCi, and evaluate constraint propagation as

∂tC
2 =

δC2

δui
(∂tu

i). (3)
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There exists various combinations of this adjustment. Fiske[6] proposed an adjusted term as

∂tu
i = [Original Terms] − κij δC2

δuj
, (4)

with κij of positive definite. The constraint propagation, then, becomes

∂tC
2 = [Original Terms] − κij δC2

δui

δC2

δuj
, (5)

which clearly shows the dumping of constraints. If we set κij so that the second term becomes more
dominant of (5) than first term in evolution, then C2 dumps because of ∂tC

2 < 0. Fiske presented an
numerical example in the Maxwell system.

CAFs (constraint amplification facters) CAFs is a tool for predicting the violation of constraints.
The CAFs are the eigenvalues of the coefficient matrix of the constraiant propagation equations. Negative
real parts, or non-zero imaginary-parts of CAFs are preferable for stable evolutions.

3 Applications to the Einstein equations

3.1 For ADM Formulation

Now we apply Fiske’s method to the ADM formulation[1], which can be written as

∂tγij = −2αKij + Lβ(γij) − κγijmn
δ(CA)2

δγmn
, (6)

∂tKij = α((3)Rij + KKij − 2Ki`K
`
j) − DiDjα + Lβ(Kij) − κKijmn

δ(CA)2

δKmn
, (7)

where (CA)2 is the norm of the constraints,

(CA)2 ≡ (HA)2 + (MA)i(MA)i, (8)

and both of κγijmn, κKijmn are positive definite.
For the modified ADM equations, (6)-(7), we confirm this system has better stablility than the stan-

dard ADM system by the method proposed by Yoneda and Shinkai[5]. That is, assuming the background
metric to Minkowski metric, and setting κγijmn = κKijmn = δimδjn, we analyzed the eigenvalues of the
constraint propagation matrix . We found that all the real parts of eigenvalues are negative. Therefore
the system is expected to dump the violation of constraints.

3.2 For BSSN Formulation

The widely used BSSN evolution equations[3, 5] are,

∂tϕ = −(1/6)αK + (1/6)(∂iβ
i) + βi(∂iϕ), (9)

∂tK = αÃijÃ
ij + (1/3)αK2 − DiD

iα + βi(∂iK), (10)

∂tγ̃ij = −2αÃij − (2/3)γ̃ij(∂`β
`) + γ̃j`(∂iβ

`) + γ̃i`(∂jβ
`) + β`(∂`γ̃ij), (11)

∂tÃij = αKÃij − 2αÃi`Ã
`
j + αe−4ϕRij

TF

− e−4ϕ(DiDjα)TF − (2/3)Ãij(∂`β
`) + (∂iβ

`)Ãj` + (∂jβ
`)Ãi` + β`(∂`Ãij), (12)

∂tΓ̃i = 2α{6(∂jϕ)Ãij + Γ̃i
j`Ã

j` − (2/3)γ̃ij(∂jK)}

− 2(∂jα)Ãij + (2/3)Γ̃i(∂jβ
j) + (1/3)γ̃ij(∂`∂jβ

`) + β`(∂`Γ̃i) − Γ̃j(∂jβ
i) + γ̃j`(∂j∂`β

i), (13)
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The BSSN system has 5 constraint equations; both “kinetic” and “algebraic” constraint equations:

HB ≡ e−4ϕR̃ − 8e−4ϕ(D̃iD̃
iϕ + (D̃mϕ)(D̃mϕ)) + (2/3)K2 − ÃijÃ

ij − (2/3)AK ≈ 0, (14)

(MB)i ≡ −(2/3)D̃iK + 6(D̃jϕ)Ãj
i + D̃jÃ

j
i − 2(D̃iϕ)A ≈ 0, (15)

Gi ≡ Γ̃i − γ̃j`Γ̃i
j` ≈ 0, (16)

A ≡ Ãij γ̃ij ≈ 0, (17)
S ≡ det(γ̃ij) − 1 ≈ 0. (18)

The C2-adjusted BSSN evolution equations are written as

∂tϕ = (9) − λϕ

(
δ(CB)2

δϕ

)
, (19)

∂tK = (10) − λK

(
δ(CB)2

δK

)
, (20)

∂tγ̃ij = (11) − λ
eγijmn

(
δ(CB)2

δγ̃mn

)
, (21)

∂tÃij = (12) − λ
eAijmn

(
δ(CB)2

δÃmn

)
, (22)

∂tΓ̃i = (13) − λij
eΓ

(
δ(CB)2

δΓ̃j

)
, (23)

where (CB)2 is the norm of the constraints,

(CB)2 ≡ (HB)2 + (MB)i(MB)i + GiGi + A2 + S2,

and all of the coefficients, λϕ, λK , λ
eγijmn, λ

eAijmn and λij
eΓ

are supposed to be positive definite.

CAFs of the C2-adjusted BSSN system CAFs of the system

∂t


ĤB

M̂B

Ĝi

Â
Ŝ

 =

 · · · · · · · · ·




ĤB

M̂B

Ĝi

Â
Ŝ

 (24)

are confirmed to be

• three negative real numbers, and

• six complex numbers with negative real part,

if we fix the background metric is Minkowskii metric and set λϕ = λK = λ, λ
eγijmn = λ

eAijmn = λδimδjn

and λij
eΓ

= λδij for simplicity, where λ > 0.

4 Numerical Examples

We show damping of constraint in numerical evolutions using polarized Gowdy wave evolution, which
is one of the standard tests for comparisons of formulations in numerical relativity as is known to the
Apples-with-Apples testbeds [7].

The metric of polarized Gowdy wave is

ds2 = t−1/2eλ/2(−dt2 + dx2) + t(eP dy2 + e−P dz2), (25)

where P and λ are functions of x and t. The time coordinate t is chosen such that time increases as the
universe expands, this metric is singular at t = 0 which corresponds to the cosmological singularity.
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4.1 Adjusted ADM formulation
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Figure 1: Polarized Gowdy-wave test with the
adjusted ADM system. The vertical axis is
log(||(CA)2||2) and the horizontal axis is backward
time. The dotted line is the one with (6)-(7) by set-
ting κγijmn = 1.0 × 10−4.8αγimγjn and κKijmn =
1.0×10−5.4αγimγjn. The solid line is calculated with
the standard ADM.

We see from Figure 1 that the adjusted ADM system, (6)-(7), has better stability than the standard
ADM system. The norm ||(CA)2||2 of the adjusted ADM is 7.24 × 10−1 times of that of the standard
ADM at time t = −3000.

4.2 Adjusted BSSN formulation

The comparison of the evolutions between the standard BSSN system and the C2-adjusted BSSN system
is shown in Figure 2.
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Figure 2: Constraint violations of the standard BSSN system, and of the C2-adjusted BSSN system. We
see the adjusted version shows better performance than the standard system. (λϕ = 0, λK = 10−2.7, λγ̃ =
10−5.0δimδjn, λÃ = 0, λΓ̃ = 10−1.4δij .)

We think the stability of the adjusted BSSN formulation is explained by the dumping of MB
i at

the early time (about t ≤ −20). As was argued by Kiuchi and Shinkai[4], the key of the stability of
the evolution with BSSN system is to dump MB

i earlier. We see the adjusted version shows better
performance than the standard system by improving the violation of MB

i in the initial stage.
We also compared the L2 norm of the (CB)2 of three systems, including another type of adjustment,

∂tÃij = (12) + κAαD̃(iMj)

with κA = 10−2.4. C2-adjusted BSSN system keeps the violation of constraint lowest between these three
types of formulations.
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5 Summary

In this report, we applied the adjusting method suggested by Fiske to the ADM and BSSN formulations,
and obtained the equations (6)-(7) and (19)-(23). We performed numerical tests with polarized Gowdy
wave and showed that the adjusted ADM and BSSN systems have actually better stablility than the
standard ADM and BSSN systems.

The advantage of the present systems to the previous adjusted systems [5, 8] is the way of specifying
the Lagrange multipliers κ. In the present systems, κs are restricted as “positive definite” from the
formulation independent on the background metric, while in the previous systems one needs to specify
the signature of κs with eigenvalue analysis which depends on the background metric.

The detail numerical analysis on the range of effective parameters and the comparisons with other
systems are underway.

This work was supported partially by the Grant-in-Aid for Scientific Research Fund of Japan Society
of the Promotion of Science, No. 22540293. Numerical Computations were carried out on Altix3700 BX2
at YITP in Kyoto University and on the Riken Integrated Cluster of Clusters (RICC) at RIKEN.
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